0-1-x-1-x-x-2-2-ln-ln-1-x-dx-3-1-3-ln-6-3-pi-pi-3-27-5ln2pi-6ln-1-6- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 152142 by Ar Brandon last updated on 26/Aug/21 ∫01x(1−x+x2)2ln(ln1x)dx=−γ3−13ln63π+π327(5ln2π−6lnΓ(16)) Answered by mindispower last updated on 28/Aug/21 ∫0∞e−2tln(t)dt(1−e−t+e−2t)2∫0∞tse−2t(1−e−t+e−2t)2dtf(s)=∫0∞tse−2t(1+2e−t+e−2t)(1+e−3t)2dt=∑m⩾0(−1)m.m∫0∞ts(e−t(2+3m)+e−t(3+3m)+e−t(4+3m))dtMissing \left or extra \rightMissing \left or extra \right=Γ(1+s)3s+1∑m⩾1(−1)m.m(1(m+23)s+1+1(1+m)s+1+1(m+43)s+1)=Γ(1+s)3s+1∑m⩾0(−1)m(1(m+23)s+1(1+m)s+1(m+43)s−23(m+23)s+1−1(1+m)s+1−43(m+43)s+1)=Γ(1+s)3s+1∑m⩾0(ζ(13,s)−ζ(56,s)+η(s)−η(1+s)+ζ(23,s)−ζ(76,s)−23(ζ(13,s+1)−ζ(56,s+1))−43(ζ(23,1+s)−ζ(76,1+s))wewant,f′(0)toobeecontinuedetoomanycalculationjustusingsteiljesconstanteoflaurentexpesionzetahurwitzfomction Commented by Ar Brandon last updated on 28/Aug/21 wowthankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: n-N-prove-9-n-3-n-1-3-n-2-3-Next Next post: Let-us-consider-an-equation-f-x-x-3-3x-k-0-Then-the-values-of-k-for-which-the-equation-has-1-Exactly-one-root-which-is-positive-then-k-belongs-to-2-Exactly-one-root-which-is-negative-th Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.