Menu Close

0-1-x-1-x-x-2-2-ln-ln-1-x-dx-3-1-3-ln-6-3-pi-pi-3-27-5ln2pi-6ln-1-6-




Question Number 152142 by Ar Brandon last updated on 26/Aug/21
∫_0 ^1 (x/((1−x+x^2 )^2 ))ln(ln(1/x))dx=−(γ/3)−(1/3)ln((6(√3))/π)+((π(√3))/(27))(5ln2π−6lnΓ((1/6)))
01x(1x+x2)2ln(ln1x)dx=γ313ln63π+π327(5ln2π6lnΓ(16))
Answered by mindispower last updated on 28/Aug/21
∫_0 ^∞ ((e^(−2t) ln(t)dt)/((1−e^(−t) +e^(−2t) )^2 ))  ∫_0 ^∞ ((t^s e^(−2t) )/((1−e^(−t) +e^(−2t) )^2 ))dt  f(s)=∫_0 ^∞ ((t^s e^(−2t) (1+2e^(−t) +e^(−2t) ))/((1+e^(−3t) )^2 ))dt  =Σ_(m≥0) (−1)^m .m∫_0 ^∞ t^s (e^(−t(2+3m)) +e^(−t(3+3m)) +e^(−t(4+3m)) )dt  =Σ_(m≥0) (−1)^m .mΓ(1+s)((1/((2+3m)^(s+1) ))+(1/((3+3m)^(s+1) ))+(1/((4+3m)^(s+1) )))  =((Γ(1+s))/3^(s+1) )Σ_(m≥1) (−1)^m .m((1/((m+(2/3))^(s+1) ))+(1/((1+m)^(s+1) ))+(1/((m+(4/3))^(s+1) )))  =((Γ(1+s))/3^(s+1) )Σ_(m≥0) (−1)^m ((1/((m+(2/3))^s ))+(1/((1+m)^s ))+(1/((m+(4/3))^s ))  −(2/(3(m+(2/3))^(s+1) ))−(1/((1+m)^(s+1) ))−(4/(3(m+(4/3))^(s+1) )))  =((Γ(1+s))/3^(s+1) )Σ_(m≥0) (ζ((1/3),s)−ζ((5/6),s)+η(s)−η(1+s)  +ζ((2/3),s)−ζ((7/6),s)−(2/3)(ζ((1/3),s+1)−ζ((5/6),s+1))  −(4/3)(ζ((2/3),1+s)−ζ((7/6),1+s))  we want ,f′(0)  too bee continuede too many calculation   just using steiljes constante  of laurent expesion zeta hurwitz fomction
0e2tln(t)dt(1et+e2t)20tse2t(1et+e2t)2dtf(s)=0tse2t(1+2et+e2t)(1+e3t)2dt=m0(1)m.m0ts(et(2+3m)+et(3+3m)+et(4+3m))dtMissing \left or extra \right=Γ(1+s)3s+1m1(1)m.m(1(m+23)s+1+1(1+m)s+1+1(m+43)s+1)=Γ(1+s)3s+1m0(1)m(1(m+23)s+1(1+m)s+1(m+43)s23(m+23)s+11(1+m)s+143(m+43)s+1)=Γ(1+s)3s+1m0(ζ(13,s)ζ(56,s)+η(s)η(1+s)+ζ(23,s)ζ(76,s)23(ζ(13,s+1)ζ(56,s+1))43(ζ(23,1+s)ζ(76,1+s))wewant,f(0)toobeecontinuedetoomanycalculationjustusingsteiljesconstanteoflaurentexpesionzetahurwitzfomction
Commented by Ar Brandon last updated on 28/Aug/21
wow thanks sir
wowthankssir

Leave a Reply

Your email address will not be published. Required fields are marked *