Menu Close

0-1-x-2-dx-1-x-4-




Question Number 85807 by jagoll last updated on 25/Mar/20
∫_0 ^1  ((x^2  dx)/( (√(1−x^4 ))))
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$
Answered by Joel578 last updated on 25/Mar/20
I  = ∫_0 ^( 1) x^2 (1 − x^4 )^(−(1/2))  dx            [u = x^4  → x = u^(1/4)  → dx = (1/4)u^(−(3/4))  du]  I = (1/4)∫_0 ^( 1) u^(1/2) (1 − u)^(−(1/2))  u^(−(3/4))  du      = (1/4) ∫_0 ^( 1) u^(−(1/4))  (1 − u)^(−(1/2))  du      = (1/4)B((3/4), (1/2))
$${I}\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}\:−\:{x}^{\mathrm{4}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}\:=\:{x}^{\mathrm{4}} \:\rightarrow\:{x}\:=\:{u}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\rightarrow\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{4}}{u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \:{du}\right] \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {u}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}\:−\:{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \:{du} \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {u}^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\left(\mathrm{1}\:−\:{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{du} \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}{B}\left(\frac{\mathrm{3}}{\mathrm{4}},\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by Joel578 last updated on 25/Mar/20
I ≈ 0.59907
$${I}\:\approx\:\mathrm{0}.\mathrm{59907} \\ $$
Commented by jagoll last updated on 25/Mar/20
betha function
$$\mathrm{betha}\:\mathrm{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *