Menu Close

0-1-x-2-log-1-x-dx-




Question Number 113159 by Dwaipayan Shikari last updated on 11/Sep/20
∫_0 ^1 x^2 log(1−x)dx
01x2log(1x)dx
Answered by MJS_new last updated on 11/Sep/20
∫x^2 ln (1−x) dx=       [by parts]  =(x^3 /3)ln (1−x) −(1/3)∫(x^3 /(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)∫x^2 +x+1+(1/(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)ln (x−1) −(x^3 /9)−(x^2 /6)−(x/3)+C  now we have to calculate the limit of this  with x→1^−   I get ∫_0 ^1 x^2 ln (1−x) dx=−((11)/(18))
x2ln(1x)dx=[byparts]=x33ln(1x)13x3x1dx==x33ln(1x)13x2+x+1+1x1dx==x33ln(1x)13ln(x1)x39x26x3+Cnowwehavetocalculatethelimitofthiswithx1Iget10x2ln(1x)dx=1118
Commented by Dwaipayan Shikari last updated on 11/Sep/20
I haven′t thought of this. Thanking you
Ihaventthoughtofthis.Thankingyou
Answered by abdomsup last updated on 11/Sep/20
let A =∫_0 ^1  x^2 ln(1−x)dx we have  (d/dx)ln(1−x) =−(1/(1−x)) =−Σ_(n=0) ^∞ x^n   ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (x^n /n) ⇒  A =−∫_0 ^1 x^2 (Σ_(n=1) ^∞  (x^n /n))dx  =−Σ_(n=1) ^∞  (1/n)∫_0 ^(1 )  x^(n+2)  dx  =−Σ_(n=1) ^∞  (1/(n(n+3)))    =−(1/3)Σ_(n=1) ^∞ ((1/n)−(1/(n+3)))  =−(1/3) Σ_(n=1) ^∞  (1/n) +(1/3)Σ_(n=1) ^∞  (1/(n+3))  but  Σ_(n=1) ^∞  (1/(n+3)) =Σ_(n=4) ^∞  (1/n) ⇒  A =−(1/3){1+(1/2)+(1/3) +Σ_(n=4) ^∞  (1/n)}  +(1/3)Σ_(n=4) ^∞  (1/4) =−(1/3){(3/2)+(1/3)}  =−(1/2)−(1/9) =((−11)/(18))
letA=01x2ln(1x)dxwehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnA=01x2(n=1xnn)dx=n=11n01xn+2dx=n=11n(n+3)=13n=1(1n1n+3)=13n=11n+13n=11n+3butn=11n+3=n=41nA=13{1+12+13+n=41n}+13n=414=13{32+13}=1219=1118
Commented by Dwaipayan Shikari last updated on 11/Sep/20
Great sir!
Greatsir!

Leave a Reply

Your email address will not be published. Required fields are marked *