Menu Close

0-1-x-2n-arcsinx-dx-




Question Number 156339 by lapache last updated on 10/Oct/21
∫_0 ^1 (x^(2n) /(arcsinx))dx=...???
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{{arcsinx}}{dx}=…??? \\ $$
Answered by ArielVyny last updated on 10/Oct/21
t=arcsinx→sint=x  ∫_0 ^(π/2) ((sin^(2n) t)/t)costdt=∫_0 ^(π/2) ((sin^(2n) t)/t)Σ_(n≥0) (((−1)^n t^(2n) )/((2n)!))  Σ_(n≥0) (((−1)^n )/((2n)!))∫_0 ^(π/2) t^(2n) sin^(2n) tdt
$${t}={arcsinx}\rightarrow{sint}={x} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}{n}} {t}}{{t}}{costdt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}{n}} {t}}{{t}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} {t}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}\right)!}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}^{\mathrm{2}{n}} {sin}^{\mathrm{2}{n}} {tdt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *