Menu Close

0-1-x-3-1-x-3-n-1-dx-




Question Number 128417 by liberty last updated on 07/Jan/21
         η = ∫_0 ^( 1)  x^3  (1−x^3 )^(n−1)  dx
$$\:\:\:\:\:\:\:\:\:\eta\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\mathrm{3}} \:\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{n}−\mathrm{1}} \:\mathrm{dx}\: \\ $$
Answered by Dwaipayan Shikari last updated on 07/Jan/21
∫_0 ^1 x^3 (1−x^3 )^(n−1) dx              x^3 =u  =(1/3)∫_0 ^1 u^(1/3) (1−u)^(n−1) du =((Γ((4/3))Γ(n))/(3Γ((4/3)+n)))=((Γ((1/3))Γ(n))/(9Γ(n+(4/3))))
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}} \left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{{n}−\mathrm{1}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} ={u} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{1}−{u}\right)^{{n}−\mathrm{1}} {du}\:=\frac{\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\Gamma\left({n}\right)}{\mathrm{3}\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}+{n}\right)}=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\Gamma\left({n}\right)}{\mathrm{9}\Gamma\left({n}+\frac{\mathrm{4}}{\mathrm{3}}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *