Menu Close

0-1-x-d-e-x-2-how-it-solve-




Question Number 151738 by tabata last updated on 22/Aug/21
∫_0 ^( 1)  x d(e^x^2  )    how it solve
01xd(ex2)howitsolve
Answered by Olaf_Thorendsen last updated on 22/Aug/21
I = ∫_0 ^1 xd(e^x^2  )  I = [xe^x^2  ]_0 ^1 − ∫_0 ^1 e^x^2  dx  I = e−((√π)/2)[erfi(x)]_0 ^1   I = e−((√π)/2)erfi(1)  erfi(z) = (2/( (√π)))Σ_(n=0) ^∞ (z^(2n+1) /((2n+1)n!))  I = e−Σ_(n=0) ^∞ (1/((2n+1)n!))
I=01xd(ex2)I=[xex2]0101ex2dxI=eπ2[erfi(x)]01I=eπ2erfi(1)erfi(z)=2πn=0z2n+1(2n+1)n!I=en=01(2n+1)n!
Commented by Olaf_Thorendsen last updated on 22/Aug/21
I ≈ e−1,462651746  I ≈ 1,255630082
Ie1,462651746I1,255630082

Leave a Reply

Your email address will not be published. Required fields are marked *