Question Number 79222 by mind is power last updated on 23/Jan/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{x}^{{k}} }{dx}=? \\ $$
Commented by mathmax by abdo last updated on 24/Jan/20
$${at}\:{form}\:{of}\:{serie}\:\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{x}^{{k}} }{dx}\:\Rightarrow \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\frac{{x}^{{n}−\mathrm{1}} }{{x}−\mathrm{1}}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} \left({x}−\mathrm{1}\right)}{{x}^{{n}} −\mathrm{1}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}+\mathrm{1}} −{x}^{{n}} }{{x}^{{n}} −\mathrm{1}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{n}+\mathrm{1}} −{x}^{{n}} \right)\sum_{{k}=\mathrm{0}} ^{\infty} \:{x}^{{kn}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{{n}+\mathrm{1}+{kn}} −{x}^{{n}+{kn}} \right){dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{\left({k}+\mathrm{1}\right){n}+\mathrm{1}} −{x}^{\left({k}+\mathrm{1}\right){n}} \right){dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}+\mathrm{2}}{x}^{\left({k}+\mathrm{1}\right){n}+\mathrm{2}} −\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}}{x}^{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \left\{\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}+\mathrm{2}}\:−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}}\right\}=\sum_{{k}=\mathrm{1}} ^{\infty} \left\{\frac{\mathrm{1}}{{kn}+\mathrm{2}}−\frac{\mathrm{1}}{{kn}\:+\mathrm{1}}\right\} \\ $$$$=−\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({kn}\:+\mathrm{1}\right)\left({kn}\:+\mathrm{2}\right)}\:\:\:{be}\:{continued}…\left({rest}\:{value}\:{of}\:{this}\:{serie}!\right) \\ $$
Commented by mind is power last updated on 24/Jan/20
$${nice}\:{sir}\:{thank}\:{you} \\ $$
Commented by abdomathmax last updated on 24/Jan/20
$${you}\:{are}\:{welcome} \\ $$