Menu Close

0-2-1-2-y-1-e-x-2-dxdy-




Question Number 90424 by john santu last updated on 23/Apr/20
∫_0 ^2  ∫_((1/2)y) ^1  e^(−x^2 )  dxdy = ?
$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{\frac{\mathrm{1}}{\mathrm{2}}{y}} {\overset{\mathrm{1}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dxdy}\:=\:?\: \\ $$
Commented by john santu last updated on 23/Apr/20
change order   0 <y<2 , (1/2)y<x<1  ⇒ ∫_0 ^1  ∫_0 ^(2x)  e^(−x^2 )  dy dx =   ∫ _0 ^1  ye^(−x^2 )  ]_0 ^(2x)  dx = ∫_0 ^1  2xe^(−x^2 )  dx   = −e^(−x^2 )  ]_0 ^1  = −(1/e)+1
$${change}\:{order}\: \\ $$$$\mathrm{0}\:<{y}<\mathrm{2}\:,\:\frac{\mathrm{1}}{\mathrm{2}}{y}<{x}<\mathrm{1} \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{2}{x}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dy}\:{dx}\:=\: \\ $$$$\left.\int\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:{ye}^{−{x}^{\mathrm{2}} } \:\right]_{\mathrm{0}} ^{\mathrm{2}{x}} \:{dx}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{2}{xe}^{−{x}^{\mathrm{2}} } \:{dx}\: \\ $$$$\left.=\:−{e}^{−{x}^{\mathrm{2}} } \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:−\frac{\mathrm{1}}{{e}}+\mathrm{1}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *