Menu Close

0-2-1-cosx-10-cos-10x-dx-




Question Number 151638 by mathdanisur last updated on 22/Aug/21
∫_( 0) ^( 2𝛑) (1 - cosx)^(10)  cos(10x) dx = ?
$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{2}\boldsymbol{\pi}} {\int}}\left(\mathrm{1}\:-\:\mathrm{cos}\boldsymbol{\mathrm{x}}\right)^{\mathrm{10}} \:\mathrm{cos}\left(\mathrm{10x}\right)\:\mathrm{dx}\:=\:? \\ $$
Answered by Olaf_Thorendsen last updated on 22/Aug/21
I = ∫_0 ^(2π) (1−cosx)^(10) cos(10x) dx  I = Re∫_0 ^(2π) (1−cosx)^(10) e^(10ix)  dx  I = Re∫_0 ^(2π) (1−((e^(ix) +e^(−ix) )/2))^(10) e^(10ix)  dx  Let u = e^(ix)   I = Re∫_(∣u∣=1) (1−((u+(1/u))/2))^(10) u^(10)  (−i(du/u))  I = (1/2^(10) )Re∫_(∣u∣=1) −(i/u)(u−1)^(20)  du  I = (1/2^(10) )Re(2iπ(Res(−(i/u)(u−1)^(20) ,0))  I = (1/2^(10) )Re(2iπ×(−i))  I = ((2π)/2^(10) ) = (π/2^9 ) = (π/(512))
$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{1}−\mathrm{cos}{x}\right)^{\mathrm{10}} \mathrm{cos}\left(\mathrm{10}{x}\right)\:{dx} \\ $$$$\mathrm{I}\:=\:\mathrm{Re}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{1}−\mathrm{cos}{x}\right)^{\mathrm{10}} {e}^{\mathrm{10}{ix}} \:{dx} \\ $$$$\mathrm{I}\:=\:\mathrm{Re}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{1}−\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}\right)^{\mathrm{10}} {e}^{\mathrm{10}{ix}} \:{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:{e}^{{ix}} \\ $$$$\mathrm{I}\:=\:\mathrm{Re}\int_{\mid{u}\mid=\mathrm{1}} \left(\mathrm{1}−\frac{{u}+\frac{\mathrm{1}}{{u}}}{\mathrm{2}}\right)^{\mathrm{10}} {u}^{\mathrm{10}} \:\left(−{i}\frac{{du}}{{u}}\right) \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{10}} }\mathrm{Re}\int_{\mid{u}\mid=\mathrm{1}} −\frac{{i}}{{u}}\left({u}−\mathrm{1}\right)^{\mathrm{20}} \:{du} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{10}} }\mathrm{Re}\left(\mathrm{2}{i}\pi\left(\mathrm{Res}\left(−\frac{{i}}{{u}}\left({u}−\mathrm{1}\right)^{\mathrm{20}} ,\mathrm{0}\right)\right)\right. \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{10}} }\mathrm{Re}\left(\mathrm{2}{i}\pi×\left(−{i}\right)\right) \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{2}\pi}{\mathrm{2}^{\mathrm{10}} }\:=\:\frac{\pi}{\mathrm{2}^{\mathrm{9}} }\:=\:\frac{\pi}{\mathrm{512}} \\ $$
Commented by mathdanisur last updated on 23/Aug/21
Thank you Ser nice
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser}\:\mathrm{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *