Menu Close

0-2-1-e-x-2-1-dx-x-is-fractional-part-of-x-




Question Number 144849 by Dwaipayan Shikari last updated on 29/Jun/21
∫_0 ^2 (1/(e^({x}^2 ) +1))dx   {x}  is fractional part of x
021e{x}2+1dx{x}isfractionalpartofx
Answered by mathmax by abdo last updated on 29/Jun/21
Φ=∫_0 ^2  (dx/(e^({x}^2 ) +1))  we have x=[x]+{x} ⇒{x}=x−[x] ⇒  Φ=∫_0 ^1  (dx/(e^((x−[x])^2 ) +1))+∫_1 ^2  (dx/(e^((x−[x])^2 ) +1))  =∫_0 ^1  (dx/(1+e^x^2  ))  +∫_1 ^2  (dx/(1+e^((x−1)^2 ) ))(→x−1=t)  =∫_0 ^1  (dx/(1+e^x^2  )) +∫_0 ^1  (dt/(1+e^t^2  ))=2∫_0 ^1  (dx/(1+e^x^2  ))  ∫_0 ^1  (dx/(1+e^x^2  )) =∫_0 ^1  (e^(−x^2 ) /(1+e^(−x^2 ) ))dx =∫_0 ^1  e^(−x^2 ) Σ_(n=0) ^∞  e^(−nx^2 ) dx  =Σ_(n=0) ^∞  ∫_0 ^1  e^(−(n+1)x^2 ) dx =_((√(n+1))x=z)   Σ_(n=0) ^∞  ∫_0 ^(√(n+1)) e^(−z^2 ) (dz/(n+1))  Φ=Σ_(n=0) ^∞  (1/(n+1))∫_0 ^(√(n+1))  e^(−z^2 ) dz
Φ=02dxe{x}2+1wehavex=[x]+{x}{x}=x[x]Φ=01dxe(x[x])2+1+12dxe(x[x])2+1=01dx1+ex2+12dx1+e(x1)2(x1=t)=01dx1+ex2+01dt1+et2=201dx1+ex201dx1+ex2=01ex21+ex2dx=01ex2n=0enx2dx=n=001e(n+1)x2dx=n+1x=zn=00n+1ez2dzn+1Φ=n=01n+10n+1ez2dz
Commented by mathmax by abdo last updated on 29/Jun/21
Φ=Σ_(n=0) ^∞  (2/(n+1))∫_0 ^(√(n+1)) e^(−z^2 ) dz
Φ=n=02n+10n+1ez2dz
Commented by Dwaipayan Shikari last updated on 29/Jun/21
Thanks sir
Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *