Menu Close

0-2-dt-4-2-sint-6-




Question Number 149917 by mathdanisur last updated on 08/Aug/21
∫_( 0) ^( 2𝛑) (dt/(4(√2) sint + 6)) = ?
2π0dt42sint+6=?
Answered by mathmax by abdo last updated on 08/Aug/21
Ψ=∫_0 ^(2π)  (dt/(4(√2)sint +6))  ⇒Ψ=∫_0 ^(2π)  (dt/(4(√2)(((e^(it) −e^(−it) )/(2i)))+6))  =∫_0 ^(2π)  ((2idt)/(4(√2)(e^(it) −e^(−it) )+12i)) =_(e^(it)  =z)    ∫_(∣z∣=1)     ((2i)/(4(√2)(z−z^(−1) )+12i))(dz/(iz))  =∫_(∣z∣=1)     (1/(z(2(√2)z−2(√2)z^(−1) +6i)))dz  =∫_(∣z∣=1)     (dz/(2(√2)z^2 +6iz−2(√2)))  let Λ(z)=(1/(2(√2)z^2  +6iz −2(√2)))  poles of Λ?  Δ^′  =(3i)^2  +8 =−9+8=−1  ⇒z_1 =((−3i+i)/(2(√2)))=((−2i)/(2(√2)))=((−i)/( (√2)))  z_2 =((−3i−i)/(2(√2)))=((−4i)/(2(√2)))=((−2i)/( (√2)))=−(√2)i  ona   ∣z_1 ∣=(1/2)<1  and ∣z_2 ∣=(√2)>1  (out of circle) ⇒  ⇒∫_(∣z∣=1)    Λ(z)dz=2iπ Res(Λ,z_1 ) we have   Λ(z)=(1/(2(√2)(z−z_1 )(z−z_2 ))) ⇒Res(Λ,z_1 )=(1/(2(√2)(z_1 −z_2 )))  =(1/(2(√2)(−(i/( (√2)))+(√2)i))) =(1/(2i(√2)((√2)−(1/( (√2))))))=((√2)/(2i(√2)))=(1/(2i)) ⇒  ∫_(∣z∣=1)   Λ(z)dz =2iπ×(1/(2i))=π ⇒Ψ=π
Ψ=02πdt42sint+6Ψ=02πdt42(eiteit2i)+6=02π2idt42(eiteit)+12i=eit=zz∣=12i42(zz1)+12idziz=z∣=11z(22z22z1+6i)dz=z∣=1dz22z2+6iz22letΛ(z)=122z2+6iz22polesofΛ?Δ=(3i)2+8=9+8=1z1=3i+i22=2i22=i2z2=3ii22=4i22=2i2=2ionaz1∣=12<1andz2∣=2>1(outofcircle)z∣=1Λ(z)dz=2iπRes(Λ,z1)wehaveΛ(z)=122(zz1)(zz2)Res(Λ,z1)=122(z1z2)=122(i2+2i)=12i2(212)=22i2=12iz∣=1Λ(z)dz=2iπ×12i=πΨ=π
Commented by mathdanisur last updated on 08/Aug/21
Ser, Thank You
Ser,ThankYou

Leave a Reply

Your email address will not be published. Required fields are marked *