Menu Close

0-2-sinx-cosx-please-help-me-out-




Question Number 152088 by rexford last updated on 25/Aug/21
∫_0 ^(Π/2) ∣sinx−cosx∣  please help me out
0Π2sinxcosxpleasehelpmeout
Answered by Olaf_Thorendsen last updated on 25/Aug/21
I = ∫_0 ^(π/2) ∣sinx−cosx∣ dx  I = ∫_0 ^(π/2) ∣(√2)sin((π/4)−x)∣ dx  I = 2∫_0 ^(π/4) (√2)sin((π/4)−x) dx  I = 2(√2)[cos((π/4)−x)]_0 ^(π/4)   I = 2(√2)(1−(1/( (√2)))) = 2((√2)−1)
I=0π2sinxcosxdxI=0π22sin(π4x)dxI=20π42sin(π4x)dxI=22[cos(π4x)]0π4I=22(112)=2(21)
Answered by puissant last updated on 25/Aug/21
=∫_0 ^(π/4) (cosx−sinx)dx+∫_(π/4) ^(π/2) (sinx−cosx)dx  =[sinx+cosx]_0 ^(π/4) +[−cosx−sinx]_(π/4) ^(π/2)   = (√2)−1+(−1+(√2))    =2(√2)−2    =2((√2)−1)
=0π4(cosxsinx)dx+π4π2(sinxcosx)dx=[sinx+cosx]0π4+[cosxsinx]π4π2=21+(1+2)=222=2(21)
Commented by peter frank last updated on 25/Aug/21
good
good
Commented by rexford last updated on 26/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *