Menu Close

0-2-x-4-1-x-2-dx-0-1-x-10-1-x-n-dx-




Question Number 85717 by M±th+et£s last updated on 24/Mar/20
∫_0 ^2 x^4 (√(1−x^2 )) dx    ∫_0 ^1 x^(10) (1−x^n )dx
$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{4}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{10}} \left(\mathrm{1}−{x}^{{n}} \right){dx} \\ $$$$ \\ $$
Answered by mind is power last updated on 24/Mar/20
∫_0 ^1 x^4 (√(1−x^2 ))dx  =∫_0 ^(π/2) sin^4 (t)cos^2 (t)dt  =∫_0 ^(π/2) ((sin^2 (2t))/4)sin^2 (t)dt  easy  2)=(1/(10))−(1/(n+11))=((n+1)/(10(n+11)))
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{4}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{4}} \left({t}\right){cos}^{\mathrm{2}} \left({t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{t}\right)}{\mathrm{4}}{sin}^{\mathrm{2}} \left({t}\right){dt} \\ $$$${easy} \\ $$$$\left.\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{10}}−\frac{\mathrm{1}}{{n}+\mathrm{11}}=\frac{{n}+\mathrm{1}}{\mathrm{10}\left({n}+\mathrm{11}\right)} \\ $$
Commented by M±th+et£s last updated on 24/Mar/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *