Question Number 104264 by mohammad17 last updated on 20/Jul/20
$$\int_{\mathrm{0}} ^{\:\sqrt{\mathrm{2}}} \:\int_{{y}} ^{\:\sqrt{\mathrm{4}−{y}^{\mathrm{2}} }} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$
Answered by Ar Brandon last updated on 20/Jul/20
$$\mathcal{I}=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \left\{\int_{\mathrm{y}} ^{\sqrt{\mathrm{4}−\mathrm{y}^{\mathrm{2}} }} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }}\right\}\mathrm{dy}=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\centerdot\left\{\int_{\mathrm{y}} ^{\sqrt{\mathrm{4}−\mathrm{y}^{\mathrm{2}} }} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\right)^{\mathrm{2}} }}\right\}\mathrm{dy} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\centerdot\frac{\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}{\mathrm{1}}\left\{\mathrm{Arcsinh}\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\right)\right\}_{\mathrm{y}} ^{\sqrt{\mathrm{4}−\mathrm{y}^{\mathrm{2}} }} \mathrm{dy} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \left\{\mathrm{Arcsinh}\left(\sqrt{\frac{\mathrm{4}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\right)−\mathrm{Arcsinh}\left(\frac{\mathrm{y}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\right)\right\}\mathrm{dy} \\ $$$${To}\:{be}\:{continued}… \\ $$
Commented by mohammad17 last updated on 20/Jul/20
$${sir}\:{by}\:{polar} \\ $$
Answered by Ar Brandon last updated on 21/Jul/20