Menu Close

0-2pi-1-a-2-cos-2-t-b-2-sin-2-t-dt-2pi-ab-




Question Number 61465 by arcana last updated on 02/Jun/19
∫_0 ^(2π) (1/(a^2 cos^2 (t)+b^2 sin^2 (t)))dt=((2π)/(ab))?
02π1a2cos2(t)+b2sin2(t)dt=2πab?
Commented by maxmathsup by imad last updated on 03/Jun/19
let A =∫_0 ^(2π)   (dt/(a^2 cos^2 t +b^2 sin^2 t)) ⇒A =∫_0 ^(2π)    ((2dt)/(a^2 (1+cos(2t))+b^2 (1−cos(2t)))  =∫_0 ^(2π)   ((2dt)/(a^2  +b^2  +(a^2 −b^2 )cos(2t))) =_(2t =x)      ∫_0 ^(4π)    (dx/(a^2  +b^2  +(a^2 −b^2 )cos(x)))  =∫_0 ^(2π)  (dx/(a^2  +b^2   +(a^2 −b^2 )cos(x))) +∫_(2π) ^(4π)    (dx/(a^2  +b^2  +(a^2 −b^2 )cos(x))) =H+K  H =_(e^(ix) =z)     ∫_(∣z∣=1)     (dz/(iz{ a^2  +b^2  +(a^2 −b^2 )((z+z^(−1) )/2)})) =∫_(∣z∣=1)   ((2dz)/(iz{2(a^2  +b^2 )+(a^2 −b^2 )(z+z^(−1) )}))  = ∫_(∣z∣=1)      ((2dz)/(2i(a^2  +b^2 )z +i(a^2 −b^2 )z^2  +i(a^2 −b^2 )))  =∫  ((−2i dz)/((a^2 −b^2 )z^2 +2(a^2  +b^2 )z +a^2 −b^2 )) let ϕ(z) =((−2i)/((a^2 −b^2 )z^2  +2(a^2  +b^2 )z +a^2 −b^2 ))  Δ_d ^′ =  =(a^2  +b^2 )^2 −(a^2 −b^2 )^2  =a^4  +2a^2 b^2  +b^4 −a^4 +2a^2 b^2 −b^4  =4a^2 b^2   ⇒  z_1 =((−a^2 −b^2 +2∣ab∣)/(a^2 −b^2 ))  =−(((∣a∣−∣b∣)^2 )/(∣a∣^2 −∣b∣^2 )) =−((∣a∣−∣b∣)/(∣a∣+∣b∣))     (a≠b)  z_2 =((−a^2 −b^2 −2∣ab∣)/(a^2 −b^2 )) =−(((∣a∣+∣b∣)^2 )/(a^2 −b^2 )) =−((∣a∣+∣b∣)/(∣a∣−∣b∣)) (=(1/z_1 ))∣z  ∣z_1 ∣−1 =((∣∣a∣−∣b∣∣)/(∣a∣+∣b∣)) −1 = ((∣∣a∣−∣b∣∣−(∣a∣+∣b∣))/((....)))<0  ∣z_2 ∣−1 >0  (to eliminate from residus ⇒  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ ,z_1 ) we have ϕ(z) = ((−2i)/((a^2 −b^2 )(z−z_1 )(z−z_2 ))) ⇎  Res(ϕ,z_1 ) =((−2i)/((a^2 −b^2 )(z_1 −z_2 ))) =((−2i)/((a^2 −b^2 )(((∣a∣+∣b∣)/(∣a∣−∣b∣))−((∣a∣−∣b∣)/(∣a∣+∣b∣))))) =((−2i)/((∣a∣+∣b∣)^2 −(∣a∣−∣b∣)^2 ))  =((−2i)/(4∣ab∣)) =−(i/(2∣ab∣)) ⇒∫_(∣z∣=1)  ϕ(z)dz =2iπ ((−i)/(2∣ab∣)) = (π/(∣ab∣)) =H  K =_(x=2π +t)    ∫_0 ^(2π)      (dt/(a^2  +b^2  +(a^2 −b^2 )cost)) =H ⇒  ∫_0 ^(2π)    (dt/(a^2 cos^2 t +b^2 sin^2 t)) =2H  = ((2π)/(∣ab∣))  if a=b we get  ∫_0 ^(2π)   (dt/(a^2 cos^2 t +b^2 sin^2 t)) = (1/a^2 ) (2π) =((2π)/a^2 ) .
letA=02πdta2cos2t+b2sin2tA=02π2dta2(1+cos(2t))+b2(1cos(2t)=02π2dta2+b2+(a2b2)cos(2t)=2t=x04πdxa2+b2+(a2b2)cos(x)=02πdxa2+b2+(a2b2)cos(x)+2π4πdxa2+b2+(a2b2)cos(x)=H+KH=eix=zz∣=1dziz{a2+b2+(a2b2)z+z12}=z∣=12dziz{2(a2+b2)+(a2b2)(z+z1)}=z∣=12dz2i(a2+b2)z+i(a2b2)z2+i(a2b2)=2idz(a2b2)z2+2(a2+b2)z+a2b2letφ(z)=2i(a2b2)z2+2(a2+b2)z+a2b2Δd==(a2+b2)2(a2b2)2=a4+2a2b2+b4a4+2a2b2b4=4a2b2z1=a2b2+2aba2b2=(ab)2a2b2=aba+b(ab)z2=a2b22aba2b2=(a+b)2a2b2=a+bab(=1z1)zz11=∣∣ab∣∣a+b1=∣∣ab∣∣(a+b)(.)<0z21>0(toeliminatefromresidusz∣=1φ(z)dz=2iπRes(φ,z1)wehaveφ(z)=2i(a2b2)(zz1)(zz2)Res(φ,z1)=2i(a2b2)(z1z2)=2i(a2b2)(a+bababa+b)=2i(a+b)2(ab)2=2i4ab=i2abz∣=1φ(z)dz=2iπi2ab=πab=HK=x=2π+t02πdta2+b2+(a2b2)cost=H02πdta2cos2t+b2sin2t=2H=2πabifa=bweget02πdta2cos2t+b2sin2t=1a2(2π)=2πa2.
Answered by tanmay last updated on 03/Jun/19
∫_0 ^(2π) ((sec^2 t)/(a^2 +b^2 tan^2 t))dt  (1/b^2 )∫_0 ^(2π) ((d(tant))/(((a/b^ ))^2 +(tant)^2 ))dt  ∫_0 ^(2a) f(t)dt=2∫_0 ^a f(t)dt  when f(2a−t)=f(t)  (2/b^2 )∫_0 ^π ((d(tant))/(((a/b))^2 +(tant)^2 ))  =(2/b^2 )×2∫_0 ^(π/2) ((d(tant))/(((a/b))^2 +(tant)^2 ))  =(4/b^2 )×(1/(((a/b))))×∣tan^(−1) (((tant)/(a/b)))∣_0 ^(π/2)   =(4/(ab))×[tan^(−1) (∞)−tan^(−1) (0)]  =(4/(ab))×(π/2)=((2π)/(ab))
02πsec2ta2+b2tan2tdt1b202πd(tant)(ab)2+(tant)2dt02af(t)dt=20af(t)dtwhenf(2at)=f(t)2b20πd(tant)(ab)2+(tant)2=2b2×20π2d(tant)(ab)2+(tant)2=4b2×1(ab)×tan1(tantab)0π2=4ab×[tan1()tan1(0)]=4ab×π2=2πab

Leave a Reply

Your email address will not be published. Required fields are marked *