0-2pi-1-a-2-cos-2-t-b-2-sin-2-t-dt-2pi-ab- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61465 by arcana last updated on 02/Jun/19 ∫02π1a2cos2(t)+b2sin2(t)dt=2πab? Commented by maxmathsup by imad last updated on 03/Jun/19 letA=∫02πdta2cos2t+b2sin2t⇒A=∫02π2dta2(1+cos(2t))+b2(1−cos(2t)=∫02π2dta2+b2+(a2−b2)cos(2t)=2t=x∫04πdxa2+b2+(a2−b2)cos(x)=∫02πdxa2+b2+(a2−b2)cos(x)+∫2π4πdxa2+b2+(a2−b2)cos(x)=H+KH=eix=z∫∣z∣=1dziz{a2+b2+(a2−b2)z+z−12}=∫∣z∣=12dziz{2(a2+b2)+(a2−b2)(z+z−1)}=∫∣z∣=12dz2i(a2+b2)z+i(a2−b2)z2+i(a2−b2)=∫−2idz(a2−b2)z2+2(a2+b2)z+a2−b2letφ(z)=−2i(a2−b2)z2+2(a2+b2)z+a2−b2Δd′==(a2+b2)2−(a2−b2)2=a4+2a2b2+b4−a4+2a2b2−b4=4a2b2⇒z1=−a2−b2+2∣ab∣a2−b2=−(∣a∣−∣b∣)2∣a∣2−∣b∣2=−∣a∣−∣b∣∣a∣+∣b∣(a≠b)z2=−a2−b2−2∣ab∣a2−b2=−(∣a∣+∣b∣)2a2−b2=−∣a∣+∣b∣∣a∣−∣b∣(=1z1)∣z∣z1∣−1=∣∣a∣−∣b∣∣∣a∣+∣b∣−1=∣∣a∣−∣b∣∣−(∣a∣+∣b∣)(….)<0∣z2∣−1>0(toeliminatefromresidus⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)wehaveφ(z)=−2i(a2−b2)(z−z1)(z−z2)⇎Res(φ,z1)=−2i(a2−b2)(z1−z2)=−2i(a2−b2)(∣a∣+∣b∣∣a∣−∣b∣−∣a∣−∣b∣∣a∣+∣b∣)=−2i(∣a∣+∣b∣)2−(∣a∣−∣b∣)2=−2i4∣ab∣=−i2∣ab∣⇒∫∣z∣=1φ(z)dz=2iπ−i2∣ab∣=π∣ab∣=HK=x=2π+t∫02πdta2+b2+(a2−b2)cost=H⇒∫02πdta2cos2t+b2sin2t=2H=2π∣ab∣ifa=bweget∫02πdta2cos2t+b2sin2t=1a2(2π)=2πa2. Answered by tanmay last updated on 03/Jun/19 ∫02πsec2ta2+b2tan2tdt1b2∫02πd(tant)(ab)2+(tant)2dt∫02af(t)dt=2∫0af(t)dtwhenf(2a−t)=f(t)2b2∫0πd(tant)(ab)2+(tant)2=2b2×2∫0π2d(tant)(ab)2+(tant)2=4b2×1(ab)×∣tan−1(tantab)∣0π2=4ab×[tan−1(∞)−tan−1(0)]=4ab×π2=2πab Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-61461Next Next post: R-3sin-5-4cos-5-5cos-58-35-2-cos-13-cos-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.