Menu Close

0-2pi-a-2-b-2-2abcos-d-with-a-gt-b-gt-0-




Question Number 37404 by ajfour last updated on 12/Jun/18
∫_0 ^(  2π) (√(a^2 +b^2 −2abcos θ)) dθ       with  a>b>0 .
$$\int_{\mathrm{0}} ^{\:\:\mathrm{2}\pi} \sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\theta}\:{d}\theta\: \\ $$$$\:\:\:\:{with}\:\:{a}>{b}>\mathrm{0}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
∫_0 ^(2Π) (√(a^2 +b^2 −2ab+2ab−2abcosθ)) dθ  ∫_0 ^(2Π) (√((a−b)^2 +2ab×2sin^2 (θ/2))) dθ  ∫_0 ^(2Π) (√((a−b)^2 +(2(√(ab)) )^2 sin^2 θ))dθ  =(1/(2(√(ab)) ))∫_0 ^(2Π) (√(k^2 +sin^2 θ)) dθ  {k=(((a−b))/(2(√(ab)) ))}  another way...  the vslue of cosθ lies between ±1  (√(a^2 +b^2 −2ab))<(√(a^2 +b^2 −2abcosθ))  <(√(a^2 +b^2 +2ab))  (a−b)∫_0 ^(2Π) dθ<I<(a+b)∫_0 ^(2Π) dθ  (a−b)×2Π<I<(a+b)×2Π
$$\int_{\mathrm{0}} ^{\mathrm{2}\Pi} \sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}+\mathrm{2}{ab}−\mathrm{2}{abcos}\theta}\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\Pi} \sqrt{\left({a}−{b}\right)^{\mathrm{2}} +\mathrm{2}{ab}×\mathrm{2}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\Pi} \sqrt{\left({a}−{b}\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{{ab}}\:\right)^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{ab}}\:}\int_{\mathrm{0}} ^{\mathrm{2}\Pi} \sqrt{{k}^{\mathrm{2}} +{sin}^{\mathrm{2}} \theta}\:{d}\theta\:\:\left\{{k}=\frac{\left({a}−{b}\right)}{\mathrm{2}\sqrt{{ab}}\:}\right\} \\ $$$${another}\:{way}… \\ $$$${the}\:{vslue}\:{of}\:{cos}\theta\:{lies}\:{between}\:\pm\mathrm{1} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}}<\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{abcos}\theta}\:\:<\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}} \\ $$$$\left({a}−{b}\right)\int_{\mathrm{0}} ^{\mathrm{2}\Pi} {d}\theta<{I}<\left({a}+{b}\right)\int_{\mathrm{0}} ^{\mathrm{2}\Pi} {d}\theta \\ $$$$\left({a}−{b}\right)×\mathrm{2}\Pi<{I}<\left({a}+{b}\right)×\mathrm{2}\Pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *