Menu Close

0-2pi-cos-2-sin-d-




Question Number 26463 by sanyam soni last updated on 25/Dec/17
∫_0 ^(2π) cos^2 θsin θdθ
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}^{\mathrm{2}} \theta\mathrm{sin}\:\theta{d}\theta \\ $$
Commented by abdo imad last updated on 25/Dec/17
= −(1/3)cos_θ ^3  ]_(θ=0) ^(θ=2π) = −(1/3).0=0
$$\left.=\:−\frac{\mathrm{1}}{\mathrm{3}}{cos}_{\theta} ^{\mathrm{3}} \:\right]_{\theta=\mathrm{0}} ^{\theta=\mathrm{2}\pi} =\:−\frac{\mathrm{1}}{\mathrm{3}}.\mathrm{0}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *