Question Number 39431 by rahul 19 last updated on 06/Jul/18

Commented by prof Abdo imad last updated on 06/Jul/18
![I =Im( ∫_0 ^(2π) e^(x/2) e^(i((x/2)+(π/4))) dx) =Im( ∫_0 ^(2π) e^((1+i)(x/2) +((iπ)/4)) dx) but ∫_0 ^(2π) e^((1+i)(x/2)+((iπ)/4)) dx=e^((iπ)/4) ∫_0 ^(2π) e^(((1+i)/2)x) dx =e^((iπ)/4) [(2/(1+i)) e^(((1+i)/2)x) ]_0 ^(2π) = (2/(1+i))e^((iπ)/4) { e^((1+i)π) −1} =(2/(1+i)) e^((iπ)/4) { −e^π −1} =((2(1−i))/2) {−e^π −1} e^((iπ)/(4 )) =(−1+i)((1/( (√2))) +(i/( (√2))))(1+e^π ) =(−(1/( (√2))) −(i/( (√2))) +(i/( (√2))) −(1/( (√2))))(1+e^π ) =−(√2) (1+e^π ) but I =Im( ∫....) ⇒I=0](https://www.tinkutara.com/question/Q39445.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18

Commented by rahul 19 last updated on 06/Jul/18
Thank you sir! ����