Menu Close

0-2pi-e-x-2-sin-x-2-pi-4-dx-




Question Number 39431 by rahul 19 last updated on 06/Jul/18
 ∫_0 ^(2π)  e^(x/2) sin ((x/2)+(π/4))dx = ?
02πex2sin(x2+π4)dx=?
Commented by prof Abdo imad last updated on 06/Jul/18
I =Im( ∫_0 ^(2π)  e^(x/2)  e^(i((x/2)+(π/4))) dx)  =Im( ∫_0 ^(2π)   e^((1+i)(x/2) +((iπ)/4)) dx) but  ∫_0 ^(2π)   e^((1+i)(x/2)+((iπ)/4)) dx=e^((iπ)/4)   ∫_0 ^(2π)   e^(((1+i)/2)x) dx  =e^((iπ)/4)    [(2/(1+i)) e^(((1+i)/2)x) ]_0 ^(2π) = (2/(1+i))e^((iπ)/4)  { e^((1+i)π)  −1}  =(2/(1+i)) e^((iπ)/4) { −e^π  −1}  =((2(1−i))/2) {−e^π −1} e^((iπ)/(4 ))  =(−1+i)((1/( (√2))) +(i/( (√2))))(1+e^π )  =(−(1/( (√2))) −(i/( (√2))) +(i/( (√2))) −(1/( (√2))))(1+e^π )  =−(√2) (1+e^π )   but I =Im( ∫....) ⇒I=0
I=Im(02πex2ei(x2+π4)dx)=Im(02πe(1+i)x2+iπ4dx)but02πe(1+i)x2+iπ4dx=eiπ402πe1+i2xdx=eiπ4[21+ie1+i2x]02π=21+ieiπ4{e(1+i)π1}=21+ieiπ4{eπ1}=2(1i)2{eπ1}eiπ4=(1+i)(12+i2)(1+eπ)=(12i2+i212)(1+eπ)=2(1+eπ)butI=Im(.)I=0
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
=(1/( (√2) ))∫_0 ^(2Π) e^(x/2) ×(sin(x/2)+cos(x/2))  =(2/( (√2)))∫_0 ^(2Π) {sin(x/2).((d(e^(x/2) ))/dx)+e^(x/2) .((d(sin(x/2)))/dx)}dx  =(√2) ∫_0 ^(2Π) (d/dx)(e^(x/2) sin(x/2))dx  =(√2) ∣e^(x/2) sin(x/2)∣_0 ^(2Π) =(√2) {e^Π sinΠ−e^0 sin0}=0  pls check
=1202Πex2×(sinx2+cosx2)=2202Π{sinx2.d(ex2)dx+ex2.d(sinx2)dx}dx=202Πddx(ex2sinx2)dx=2ex2sinx202Π=2{eΠsinΠe0sin0}=0plscheck
Commented by rahul 19 last updated on 06/Jul/18
Thank you sir! ����

Leave a Reply

Your email address will not be published. Required fields are marked *