Question Number 165194 by mnjuly1970 last updated on 27/Jan/22

Answered by mindispower last updated on 27/Jan/22

Commented by mnjuly1970 last updated on 27/Jan/22

Commented by mindispower last updated on 27/Jan/22

Answered by aleks041103 last updated on 27/Jan/22
![IBP: I_n =[(1/n)ln(1+cos(x))sin(nx)]_0 ^(2π) +(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx ⇒I_n =(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx let z=e^(ix) ⇒dz=ie^(ix) dx=izdx⇒dx=(dz/(iz)) sin(x)=((e^(ix) −e^(−ix) )/(2i))=((z^2 −1)/(2iz)) sin(nx)=((z^(2n) −1)/(2iz^n )) cos(x)=((e^(ix) +e^(−ix) )/2)=((z^2 +1)/(2z)) ⇒((sin(x)sin(nx))/(1+cos(x)))dx=(((z^2 −1)(z^(2n) −1))/(−4iz^(n+2) (1+((z^2 +1)/(2z)))))dz= =i(((z−1)(z+1)(z^(2n) −1))/(2z^(n+1) (z+1)^2 ))dz=(i/2) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz Also when x∈[0,2π], z=e^(ix) ∈Γ:∣z∣=1. ⇒I_n =(i/(2n))∮_Γ (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz=(i/(2n))∮_Γ f(z)dz This can be evaluated using the Residue theorem. Poles of f(z): 1)z=−1 lim_(z→−1) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))=2(−1)^n lim_(z→−1) ((z^(2n) −1)/(z+1))= =^(l′H) 2(−1)^n lim_(z→−1) ((2nz^(2n−1) )/1)=4n(−1)^(n+1) ↛±∞ ⇒z=−1 is not a pole! 2) z=0 − obv. a pole of (n+1)−th order. ⇒∮_Γ f(z)dz=2πiRes(f,0) ⇒I_n =−(π/n)Res(f,0) Res(f,0)=(1/(n!))lim_(z→0) [(d^n /dz^n )(z^(n+1) f(z))]= =(1/(n!))lim_(z→0) [(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))] (((z−1)(z^(2n) −1))/((z+1)))=(z^(2n) −1)((z−1)/(z+1))= =(z^(2n) −1)(1−(2/(z+1)))= =z^(2n) +(2/(z+1))−1−((2z^(2n) )/(z+1)) ⇒(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))= =(((2n)!)/(n!))z^n +2(−1)^n n!(1/((z+1)^(n+1) ))−2(d^n /dz^n )((z^(2n) /(z+1))) ⇒Res(0,f)=2(−1)^n −(2/(n!)) (d^n /dz^n )((z^(2n) /(z+1)))_(z=0) Since we want (d^n /dz^n )((z^(2n) /(z+1))) at z=0 (∣z∣=0<1) we can use (1/(1+z))=Σ_(i=0) ^∞ (−z)^i ⇒ (d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = (d^n /dz^n )(Σ_(i=0) ^∞ (−z)^(i+2n) )_(z=0) = =Σ_(i=0) ^∞ (((2n+i)!)/((n+i)!))((−z)^(i+n) )_(z=0) since for i≥0 and n≥1, i+n≥1 then ((−z)^(i+n) )_(z=0) =0 ⇒(d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = 0 ⇒Res(0,f)=2(−1)^n ⇒I_n =((2(−1)^(n+1) π)/n)](https://www.tinkutara.com/question/Q165205.png)
Commented by mindispower last updated on 28/Jan/22
