Menu Close

0-2pi-ln-1-cos-x-cos-nx-dx-




Question Number 165194 by mnjuly1970 last updated on 27/Jan/22
      ∫_0 ^( 2π) ln ( 1+ cos (x)).cos (nx )dx=?
02πln(1+cos(x)).cos(nx)dx=?
Answered by mindispower last updated on 27/Jan/22
=∫_0 ^(2π) ln(2cos^2 ((x/2)))cos(nx)dx  x=2y  =2∫_0 ^π ln(2cos^2 (y))cos(2ny)dy  =2∫_0 ^(π/2) ln(2cos^2 (y))cos(2ny)dy+2∫_(π/2) ^π ln(2cos^2 (y))cos(2ny)dy  =4∫_0 ^(π/2) cos(2ny)ln(2cos^2 (y))dy  =4ln(2)∫_0 ^(π/2) cos(2ny)+8∫_0 ^(π/2) cos(2ny)ln(cos(y))dy  =−8∫_0 ^(π/2) Σ_(k≥1) (((−1)^k )/k)cos(2ky)cos(2ny)dy−8ln(2)∫_0 ^(π/2) cos2ny)dy  =−4Σ_(k≥1) (((−1)^k )/k)∫_0 ^(π/2) cos(2(k+n)x)+cos(2(k−n)x)dx  n∈N,k+n≠0;∫_0 ^(π/2) cos(2(k+n)x)dx=0  =−4Σ_(k≥1) (((−1)^k )/k)∫_0 ^(π/2) cos(2(k−n)x)dx=−4(((−1)^n )/n)∫_0 ^(π/2) dx  =−2π(((−1)^n )/n)=((2(−1)^(n−1) )/n)π,∀n≥1  n=0  ∫_0 ^(2π) ln(+cos(x))dx=∫_0 ^(2π) ln(2)+ln(cos^2 ((x/2)))dx  =2πln(2)+∫_0 ^π ln(cos^2 (x))2dx  =2πln(2)+8∫_0 ^(π/2) ln(sin(x))dx  =−2πln(2)  ∫_0 ^(2π) ln(1+cos(x))cos(x)dx= { ((−2πln(2) ,n=0)),((2π.(((−1)^(n−1) )/n);n≥1)) :}
=02πln(2cos2(x2))cos(nx)dxx=2y=20πln(2cos2(y))cos(2ny)dy=20π2ln(2cos2(y))cos(2ny)dy+2π2πln(2cos2(y))cos(2ny)dy=40π2cos(2ny)ln(2cos2(y))dy=4ln(2)0π2cos(2ny)+80π2cos(2ny)ln(cos(y))dy=80π2k1(1)kkcos(2ky)cos(2ny)dy8ln(2)0π2cos2ny)dy=4k1(1)kk0π2cos(2(k+n)x)+cos(2(kn)x)dxnN,k+n0;0π2cos(2(k+n)x)dx=0=4k1(1)kk0π2cos(2(kn)x)dx=4(1)nn0π2dx=2π(1)nn=2(1)n1nπ,n1n=002πln(+cos(x))dx=02πln(2)+ln(cos2(x2))dx=2πln(2)+0πln(cos2(x))2dx=2πln(2)+80π2ln(sin(x))dx=2πln(2)02πln(1+cos(x))cos(x)dx={2πln(2),n=02π.(1)n1n;n1
Commented by mnjuly1970 last updated on 27/Jan/22
very nice  .. really very nice solution  sir power  thanks alot
verynice..reallyverynicesolutionsirpowerthanksalot
Commented by mindispower last updated on 27/Jan/22
thanxSir withe Pleasur  Have a nice Day
thanxSirwithePleasurHaveaniceDay
Answered by aleks041103 last updated on 27/Jan/22
IBP:  I_n =[(1/n)ln(1+cos(x))sin(nx)]_0 ^(2π) +(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx  ⇒I_n =(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx  let z=e^(ix)   ⇒dz=ie^(ix) dx=izdx⇒dx=(dz/(iz))  sin(x)=((e^(ix) −e^(−ix) )/(2i))=((z^2 −1)/(2iz))  sin(nx)=((z^(2n) −1)/(2iz^n ))  cos(x)=((e^(ix) +e^(−ix) )/2)=((z^2 +1)/(2z))  ⇒((sin(x)sin(nx))/(1+cos(x)))dx=(((z^2 −1)(z^(2n) −1))/(−4iz^(n+2) (1+((z^2 +1)/(2z)))))dz=  =i(((z−1)(z+1)(z^(2n) −1))/(2z^(n+1) (z+1)^2 ))dz=(i/2) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz  Also when x∈[0,2π], z=e^(ix) ∈Γ:∣z∣=1.  ⇒I_n =(i/(2n))∮_Γ (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz=(i/(2n))∮_Γ f(z)dz  This can be evaluated using the  Residue theorem.  Poles of f(z):  1)z=−1  lim_(z→−1) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))=2(−1)^n lim_(z→−1) ((z^(2n) −1)/(z+1))=  =^(l′H) 2(−1)^n lim_(z→−1) ((2nz^(2n−1) )/1)=4n(−1)^(n+1) ↛±∞  ⇒z=−1 is not a pole!  2) z=0 − obv. a pole of (n+1)−th order.  ⇒∮_Γ f(z)dz=2πiRes(f,0)  ⇒I_n =−(π/n)Res(f,0)    Res(f,0)=(1/(n!))lim_(z→0) [(d^n /dz^n )(z^(n+1) f(z))]=  =(1/(n!))lim_(z→0) [(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))]  (((z−1)(z^(2n) −1))/((z+1)))=(z^(2n) −1)((z−1)/(z+1))=  =(z^(2n) −1)(1−(2/(z+1)))=  =z^(2n) +(2/(z+1))−1−((2z^(2n) )/(z+1))  ⇒(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))=  =(((2n)!)/(n!))z^n +2(−1)^n n!(1/((z+1)^(n+1) ))−2(d^n /dz^n )((z^(2n) /(z+1)))  ⇒Res(0,f)=2(−1)^n −(2/(n!)) (d^n /dz^n )((z^(2n) /(z+1)))_(z=0)   Since we want  (d^n /dz^n )((z^(2n) /(z+1))) at z=0 (∣z∣=0<1) we can  use (1/(1+z))=Σ_(i=0) ^∞ (−z)^i   ⇒ (d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = (d^n /dz^n )(Σ_(i=0) ^∞ (−z)^(i+2n) )_(z=0) =  =Σ_(i=0) ^∞ (((2n+i)!)/((n+i)!))((−z)^(i+n) )_(z=0)   since for i≥0 and n≥1, i+n≥1 then  ((−z)^(i+n) )_(z=0) =0  ⇒(d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = 0  ⇒Res(0,f)=2(−1)^n   ⇒I_n =((2(−1)^(n+1) π)/n)
IBP:In=[1nln(1+cos(x))sin(nx)]02π+1n02πsin(x)sin(nx)1+cos(x)dxIn=1n02πsin(x)sin(nx)1+cos(x)dxletz=eixdz=ieixdx=izdxdx=dzizsin(x)=eixeix2i=z212izsin(nx)=z2n12izncos(x)=eix+eix2=z2+12zsin(x)sin(nx)1+cos(x)dx=(z21)(z2n1)4izn+2(1+z2+12z)dz==i(z1)(z+1)(z2n1)2zn+1(z+1)2dz=i2(z1)(z2n1)zn+1(z+1)dzAlsowhenx[0,2π],z=eixΓ:∣z∣=1.In=i2nΓ(z1)(z2n1)zn+1(z+1)dz=i2nΓf(z)dzThiscanbeevaluatedusingtheResiduetheorem.Polesoff(z):1)z=1limz1(z1)(z2n1)zn+1(z+1)=2(1)nlimz1z2n1z+1==lH2(1)nlimz12nz2n11=4n(1)n+1±z=1isnotapole!2)z=0obv.apoleof(n+1)thorder.Γf(z)dz=2πiRes(f,0)In=πnRes(f,0)Res(f,0)=1n!limz0[dndzn(zn+1f(z))]==1n!limz0[dndzn((z1)(z2n1)(z+1))](z1)(z2n1)(z+1)=(z2n1)z1z+1==(z2n1)(12z+1)==z2n+2z+112z2nz+1dndzn((z1)(z2n1)(z+1))==(2n)!n!zn+2(1)nn!1(z+1)n+12dndzn(z2nz+1)Res(0,f)=2(1)n2n!dndzn(z2nz+1)z=0Sincewewantdndzn(z2nz+1)atz=0(z∣=0<1)wecanuse11+z=i=0(z)idndzn(z2nz+1)z=0=dndzn(i=0(z)i+2n)z=0==i=0(2n+i)!(n+i)!((z)i+n)z=0sincefori0andn1,i+n1then((z)i+n)z=0=0dndzn(z2nz+1)z=0=0Res(0,f)=2(1)nIn=2(1)n+1πn
Commented by mindispower last updated on 28/Jan/22
nice Solution Sir
niceSolutionSir

Leave a Reply

Your email address will not be published. Required fields are marked *