Question Number 13364 by tawa tawa last updated on 19/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17
![you should change the limits of integral. function have not real valves in interval:[0,((3(√3))/2)].](https://www.tinkutara.com/question/Q13393.png)
Answered by ajfour last updated on 19/May/17

Commented by tawa tawa last updated on 19/May/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17
![((2x)/3)=i.tgt⇒dx=(3/2)i(1+tg^2 t)dt⇒ cost=(1/( (√(1−((4x^2 )/9)))))=(3/( (√(9−4x^2 ))))=((−3i)/( (√(4x^2 −9)))) 4x^2 −9=−4.(9/4)tg^2 t−9=−9(tg^2 t+1)= =((−9)/(cos^2 t)) (i^2 =−1) I=∫((((27)/8)i^3 .tg^3 t.(3/2)i.(1+tg^2 t)dt)/(3i/cost))= =−((27)/(16))i∫((cost.tg^3 t)/(cos^2 t))dt=−((27i)/(16))∫((sin^3 t)/(cos^4 t))dt= =−((27i)/(16))∫((sint(1−cos^2 t)dt)/(cos^4 t))= =((−27i)/(16))∫[((sint)/(cos^4 t))−((sint)/(cos^2 t))]dt= =((−27i)/(16))(−(1/(5cos^5 t))+(1/(cos^3 t)))+C.= =((−27i)/(16))(−(1/5)(((4x^2 −9)^2 (√(4x^2 −9)))/(−3^5 i))+(((4x^2 −9)(√(4x^2 −9)))/(−27i)))+C= =((−(4x^2 −9)(√(4x^2 −9)))/(16×45))(4x^2 −54)+C=F(x) F(((3(√3))/2))=((−18(√(18)))/(16×45))(27−54)=+((81)/(40))(√2) F(0)=((27i)/(16×45))(−54)=−((81)/(40))i ⇒I=((81)/(40))((√2)−i) .■](https://www.tinkutara.com/question/Q13386.png)