Menu Close

0-3-3-2-x-3-4x-2-9-dx-




Question Number 13364 by tawa tawa last updated on 19/May/17
∫_(   0) ^(  ((3(√3))/2))    (x^3 /( (√(4x^2  − 9))))  dx
0332x34x29dx
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17
you should change the limits of integral.  function have not real valves in interval:[0,((3(√3))/2)].
youshouldchangethelimitsofintegral.functionhavenotrealvalvesininterval:[0,332].
Answered by ajfour last updated on 19/May/17
considering   I=∫(x^3 /( (√(4x^2 −9)))) dx  let t=4x^2 −9  dt=8xdx  tdt=32x^3 dx−9×8xdx       32x^3 dx =(t+9)dt  so,    I=(1/(32))∫ (((t+9)dt)/( (√t)))   =(1/(32))((3/2)t^(3/2) +18(√t))+C   =(3/(64))(4x^2 −9)^(3/2) +(9/(16))(4x^2 −9)+C  if the limits were appropriate  i would have tried to get an answer.
consideringI=x34x29dxlett=4x29dt=8xdxtdt=32x3dx9×8xdx32x3dx=(t+9)dtso,I=132(t+9)dtt=132(32t3/2+18t)+C=364(4x29)3/2+916(4x29)+Cifthelimitswereappropriateiwouldhavetriedtogetananswer.
Commented by tawa tawa last updated on 19/May/17
God bless you sir
Godblessyousir
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17
((2x)/3)=i.tgt⇒dx=(3/2)i(1+tg^2 t)dt⇒  cost=(1/( (√(1−((4x^2 )/9)))))=(3/( (√(9−4x^2 ))))=((−3i)/( (√(4x^2 −9))))  4x^2 −9=−4.(9/4)tg^2 t−9=−9(tg^2 t+1)=  =((−9)/(cos^2 t))      (i^2 =−1)  I=∫((((27)/8)i^3 .tg^3 t.(3/2)i.(1+tg^2 t)dt)/(3i/cost))=  =−((27)/(16))i∫((cost.tg^3 t)/(cos^2 t))dt=−((27i)/(16))∫((sin^3 t)/(cos^4 t))dt=  =−((27i)/(16))∫((sint(1−cos^2 t)dt)/(cos^4 t))=  =((−27i)/(16))∫[((sint)/(cos^4 t))−((sint)/(cos^2 t))]dt=  =((−27i)/(16))(−(1/(5cos^5 t))+(1/(cos^3 t)))+C.=  =((−27i)/(16))(−(1/5)(((4x^2 −9)^2 (√(4x^2 −9)))/(−3^5 i))+(((4x^2 −9)(√(4x^2 −9)))/(−27i)))+C=  =((−(4x^2 −9)(√(4x^2 −9)))/(16×45))(4x^2 −54)+C=F(x)  F(((3(√3))/2))=((−18(√(18)))/(16×45))(27−54)=+((81)/(40))(√2)  F(0)=((27i)/(16×45))(−54)=−((81)/(40))i  ⇒I=((81)/(40))((√2)−i)    .■
2x3=i.tgtdx=32i(1+tg2t)dtcost=114x29=394x2=3i4x294x29=4.94tg2t9=9(tg2t+1)==9cos2t(i2=1)I=278i3.tg3t.32i.(1+tg2t)dt3i/cost==2716icost.tg3tcos2tdt=27i16sin3tcos4tdt==27i16sint(1cos2t)dtcos4t==27i16[sintcos4tsintcos2t]dt==27i16(15cos5t+1cos3t)+C.==27i16(15(4x29)24x2935i+(4x29)4x2927i)+C==(4x29)4x2916×45(4x254)+C=F(x)F(332)=181816×45(2754)=+81402F(0)=27i16×45(54)=8140iI=8140(2i).◼

Leave a Reply

Your email address will not be published. Required fields are marked *