Menu Close

0-3-e-2x-dx-




Question Number 88104 by ar247 last updated on 08/Apr/20
∫_0 ^(+∞) (√(3+e^(−2x) ))dx
0+3+e2xdx
Commented by ar247 last updated on 08/Apr/20
with stap please
withstapplease
Commented by mathmax by abdo last updated on 08/Apr/20
let take a try  I =∫_0 ^∞ (√(3+e^(−2x) ))dx  changement (√(3+e^(−2x) ))=t give  3+e^(−2x) =t^2  ⇒e^(−2x) =t^2 −3 ⇒−2x =ln(t^2 −3) ⇒x =−(1/2)ln(t^2 −3)  ⇒ I =∫_2 ^(√3)   t(−(1/2))×((2t)/(t^2 −3))dt = ∫_(√3) ^2  (t^2 /(t^2 −3))dt  =∫_(√3) ^2  ((t^2 −3+3)/(t^2 −3))dt =2−(√3)+3∫_(√3) ^2  (dt/(t^2 −3)) =2−(√3)+(3/(2(√3))) ∫_(√3) ^2 ((1/(t−(√3)))−(1/(t+(√3))))dt  =2−(√3)+((√3)/2) [ln∣((t−(√3))/(t+(√3)))∣]_(√3) ^2  +C   we have lim_(t→(√3))  ln∣((t−(√3))/(t+(√3)))∣=−∞  so this integral is dvergent...!
lettakeatryI=03+e2xdxchangement3+e2x=tgive3+e2x=t2e2x=t232x=ln(t23)x=12ln(t23)I=23t(12)×2tt23dt=32t2t23dt=32t23+3t23dt=23+332dtt23=23+32332(1t31t+3)dt=23+32[lnt3t+3]32+Cwehavelimt3lnt3t+3∣=sothisintegralisdvergent!
Answered by Joel578 last updated on 08/Apr/20
If x→+∞, then 3 + e^(−2x)  → 3,  hence ∫_0 ^( +∞)  (√(3 + e^(−2x) )) dx = +∞
Ifx+,then3+e2x3,hence0+3+e2xdx=+

Leave a Reply

Your email address will not be published. Required fields are marked *