Menu Close

0-6-36-x-2-6-x-dx-




Question Number 145975 by mathdanisur last updated on 09/Jul/21
∫_( 0) ^( 6)  [ (√(36−x^2 ))−(6−x)]dx=?
$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{6}} {\int}}\:\left[\:\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }−\left(\mathrm{6}−{x}\right)\right]{dx}=? \\ $$
Answered by puissant last updated on 09/Jul/21
x=6sin(t)⇒dx=6cos(t)dt  I=6∫_0 ^(π/2) (√(1−sin^2 (t)))−(1−sin(t)dt  =6∫_0 ^(π/2) [cos(t)−sin(t)−1]dt  =6[sin(t)+cos(t)−t]_0 ^(π/2) = 6[(1−(π/2))−1]  I=−3π...
$$\mathrm{x}=\mathrm{6sin}\left(\mathrm{t}\right)\Rightarrow\mathrm{dx}=\mathrm{6cos}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$\mathrm{I}=\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}−\left(\mathrm{1}−\mathrm{sin}\left(\mathrm{t}\right)\mathrm{dt}\right. \\ $$$$=\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{cos}\left(\mathrm{t}\right)−\mathrm{sin}\left(\mathrm{t}\right)−\mathrm{1}\right]\mathrm{dt} \\ $$$$=\mathrm{6}\left[\mathrm{sin}\left(\mathrm{t}\right)+\mathrm{cos}\left(\mathrm{t}\right)−\mathrm{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\:\mathrm{6}\left[\left(\mathrm{1}−\frac{\pi}{\mathrm{2}}\right)−\mathrm{1}\right] \\ $$$$\mathrm{I}=−\mathrm{3}\pi… \\ $$
Commented by mathdanisur last updated on 10/Jul/21
thankyou Ser
$${thankyou}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *