Question Number 86247 by M±th+et£s last updated on 27/Mar/20
$$\int_{\mathrm{0}} ^{\mathrm{8}} \int_{\mathrm{0}} ^{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}}\:{dy}\:{dx} \\ $$
Commented by mathmax by abdo last updated on 27/Mar/20
$${A}\:=\int_{\mathrm{0}} ^{\mathrm{8}} \left(\int_{\mathrm{0}} ^{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \sqrt{{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} +\mathrm{1}}{dy}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{8}} \:{A}\left({x}\right){dx}\: \\ $$$${A}\left({x}\right)=\int_{\mathrm{0}} ^{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \sqrt{{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}{dy}\:\:{we}\:{do}\:{the}\:{cyangement}\:{y}\:=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{sh}\left({t}\right) \\ $$$$\Rightarrow{t}\:={argsh}\left(\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right)\:={ln}\left(\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}+\sqrt{\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right) \\ $$$${A}\left({x}\right)=\int_{\mathrm{0}} ^{{ln}\left(\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}+\sqrt{\mathrm{1}+\frac{{x}^{\frac{\mathrm{4}}{\mathrm{3}}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right)} \sqrt{{x}^{\mathrm{2}\:} +\mathrm{1}}{ch}\left({t}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{ch}\left({t}\right){dt} \\ $$$$=\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\:\int_{\mathrm{0}} ^{{ln}\left(\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}+{x}^{\frac{\mathrm{4}}{\mathrm{3}}} }}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right)} \left(\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right){ln}\left(\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}+{x}^{\frac{\mathrm{4}}{\mathrm{3}}} }}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left[{sh}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{…} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right){ln}\left(\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}\:+{x}^{\frac{\mathrm{4}}{\mathrm{3}}} }}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left[\:\frac{{e}^{\mathrm{2}{t}} −{e}^{−\mathrm{2}{t}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{…} \\ $$$${be}\:{continued}…. \\ $$
Commented by M±th+et£s last updated on 27/Mar/20
$${god}\:{bless}\:{you}\:{sir}\:.{thanks} \\ $$
Commented by mathmax by abdo last updated on 28/Mar/20
$$\:{you}\:{are}\:{welcome}\:{sir}. \\ $$