Menu Close

0-a-2-x-2-a-2-x-2-3-2-dx-




Question Number 13960 by tawa tawa last updated on 25/May/17
∫_(   0) ^( (a/2))    x^2 (a^2  − x^2 )^(−3/2)   dx
0a2x2(a2x2)3/2dx
Answered by ajfour last updated on 25/May/17
I=∫_0 ^( a/2) (x^2 /((a^2 −x^2 )^(3/2) ))dx  let x=asin θ   ⇒  dx=acos θdθ  when x=0, θ=0  when x=(a/2), θ=(π/6)  I= ∫_0 ^( π/6)  ((a^2 sin^2 θ)/(a^3 cos^3 θ))(acos θdθ)    = ∫_0 ^( π/6) tan^2 θdθ    = ∫_0 ^( π/6) (sec^2 θ−1)dθ    = [tan θ−θ]∣_0 ^(π/6)   I= (1/( (√3)))−(π/6)  =(((2(√3)−π))/6) .
I=0a/2x2(a2x2)3/2dxletx=asinθdx=acosθdθwhenx=0,θ=0whenx=a2,θ=π6I=0π/6a2sin2θa3cos3θ(acosθdθ)=0π/6tan2θdθ=0π/6(sec2θ1)dθ=[tanθθ]0π/6I=13π6=(23π)6.
Commented by tawa tawa last updated on 25/May/17
God bless you sir. i understand now.
Godblessyousir.iunderstandnow.

Leave a Reply

Your email address will not be published. Required fields are marked *