0-a-a-2-x-2-a-2-x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 94312 by i jagooll last updated on 18/May/20 ∫a0a2−x2(a2+x2)2dx? Commented by mathmax by abdo last updated on 18/May/20 letI=∫0aa2−x2(a2+x2)2dx⇒I=x=at∫01a2−a2t2a4(1+t2)2×adt=1a∫011−t2(1+t2)2dt⇒aI=∫011+t2−2t2(1+t2)2dt=∫01dt1+t2−2∫01t2(1+t2)2dtwehave∫01dt1+t2=[arctant]01=π4∫01t2(1+t2)2dt=∫011+t2−1(1+t2)2dt=∫01dt1+t2−∫01dt(1+t2)2=π4−∫01dt(1+t2)2∫01dt(1+t2)2=t=tanu∫0π41+tan2u(1+tan2u)2du=∫0π4du1+tan2u=∫0π4cos2udu=12∫0π2(1+cos(2u))du=π4+14[sin(2u)]0π4=π4+14⇒aI=π4−2{π4−π4−14}=π4+12⇒I=1a(π4+12)witha≠0fora=0Iisnotdefined! Commented by mathmax by abdo last updated on 18/May/20 erroroftypo∫01dt(1+t2)2=π8+14⇒aI=π4−2{π4−π8−14}=π4−π2+π4+12=12⇒I=12a Commented by i jagooll last updated on 18/May/20 yes.=== Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-94313Next Next post: Question-94314 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.