0-a-x-a-2-x-2-a-2-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 17011 by arnabpapu550@gmail.com last updated on 29/Jun/17 ∫0axa2−x2a2+x2dx Answered by sma3l2996 last updated on 29/Jun/17 I=∫0ax.a2−x2a2+x2dxt2=a2−x2⇒tdt=−xdxI=−∫a0t2a2−t2dt=[2a2−t2]a0I=a2−a⇔I=a(2−1) Commented by arnabpapu550@gmail.com last updated on 30/Jun/17 Theanswerisa22(Π2−1) Commented by sma3l2996 last updated on 30/Jun/17 I=∫a0t2a2−t2(−tdt)=∫0at22a2−t2dt=−∫0a2a2−t2−2a22a2−t2dt=2a2∫0adt2a2−t2−∫0a2a2−t2dt=2a2∫0adt2a.1−(t2a)2−2a∫0a1−(t2a)2dty=t2a⇒dt=2a.dyI=2a2∫012dy1−y2−2a2∫0121−y2dyI=2a2[sin−1y]022−2a2∫0221−y2dysin(u)=1−y2⇒cos(u)du=−ydysin(u)sin(u).1−sin2(u)du=−ydysin(u).1−1+y2du=−ydy⇔sin(u).y.du=−ydysin(u)du=−dyI=2a2π4−2a2∫π2π4sin(u).(−sin(u)du)=a2π2+2a2∫π2π4sin2(u)du=a2π2+a2∫π2π4(1−cos(2u))du=a2π2+a2[u−sin(2u)2]π2π4=a2π2+a2(−π4−12)=a2(π2−π4−12)I=a22(π2−1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-a-cos-1-1-x-2-1-x-2-dx-Next Next post: show-that-if-f-x-a-x-show-that-f-x-a-x-ln-a-by-using-lim-h-0-f-x-h-f-x-h- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.