Menu Close

0-a-x-a-2-x-2-a-2-x-2-dx-




Question Number 17011 by arnabpapu550@gmail.com last updated on 29/Jun/17
∫_0 ^( a) x(√((a^2 −x^2 )/(a^2 +x^2 )))dx
0axa2x2a2+x2dx
Answered by sma3l2996 last updated on 29/Jun/17
I=∫_0 ^a ((x.(√(a^2 −x^2 )))/( (√(a^2 +x^2 ))))dx  t^2 =a^2 −x^2 ⇒tdt=−xdx  I=−∫_a ^0 (t/( (√(2a^2 −t^2 ))))dt=[(√(2a^2 −t^2 ))]_a ^0   I=a(√2)−a⇔I=a((√2)−1)
I=0ax.a2x2a2+x2dxt2=a2x2tdt=xdxI=a0t2a2t2dt=[2a2t2]a0I=a2aI=a(21)
Commented by arnabpapu550@gmail.com last updated on 30/Jun/17
The answer is (a^2 /2)((Π/2)−1)
Theanswerisa22(Π21)
Commented by sma3l2996 last updated on 30/Jun/17
I=∫_a ^0 (t/( (√(2a^2 −t^2 ))))(−tdt)=∫_0 ^a (t^2 /( (√(2a^2 −t^2 ))))dt  =−∫_0 ^a ((2a^2 −t^2 −2a^2 )/( (√(2a^2 −t^2 ))))dt=2a^2 ∫_0 ^a (dt/( (√(2a^2 −t^2 ))))−∫_0 ^a (√(2a^2 −t^2 ))dt  =2a^2 ∫_0 ^a (dt/( (√2)a.(√(1−((t/( (√2)a)))^2 ))))−(√2)a∫_0 ^a (√(1−((t/( (√2)a)))^2 ))dt  y=(t/( (√2)a))⇒dt=(√2)a.dy  I=2a^2 ∫_0 ^(1/( (√2))) (dy/( (√(1−y^2 ))))−2a^2 ∫_0 ^(1/( (√2))) (√(1−y^2 ))dy  I=2a^2 [sin^(−1) y]_0 ^((√2)/2) −2a^2 ∫_0 ^((√2)/2) (√(1−y^2 ))dy  sin(u)=(√(1−y^2 ))⇒cos(u)du=((−ydy)/(sin(u)))  sin(u).(√(1−sin^2 (u)))du=−ydy  sin(u).(√(1−1+y^2 ))du=−ydy⇔sin(u).y.du=−ydy  sin(u)du=−dy  I=2a^2 (π/4)−2a^2 ∫_(π/2) ^(π/4) sin(u).(−sin(u)du)  =a^2 (π/2)+2a^2 ∫_(π/2) ^(π/4) sin^2 (u)du=a^2 (π/2)+a^2 ∫_(π/2) ^(π/4) (1−cos(2u))du  =a^2 (π/2)+a^2 [u−((sin(2u))/2)]_(π/2) ^(π/4) =a^2 (π/2)+a^2 (−(π/4)−(1/2))=a^2 ((π/2)−(π/4)−(1/2))  I=(a^2 /2)((π/2)−1)
I=a0t2a2t2(tdt)=0at22a2t2dt=0a2a2t22a22a2t2dt=2a20adt2a2t20a2a2t2dt=2a20adt2a.1(t2a)22a0a1(t2a)2dty=t2adt=2a.dyI=2a2012dy1y22a20121y2dyI=2a2[sin1y]0222a20221y2dysin(u)=1y2cos(u)du=ydysin(u)sin(u).1sin2(u)du=ydysin(u).11+y2du=ydysin(u).y.du=ydysin(u)du=dyI=2a2π42a2π2π4sin(u).(sin(u)du)=a2π2+2a2π2π4sin2(u)du=a2π2+a2π2π4(1cos(2u))du=a2π2+a2[usin(2u)2]π2π4=a2π2+a2(π412)=a2(π2π412)I=a22(π21)

Leave a Reply

Your email address will not be published. Required fields are marked *