Menu Close

0-cos-pix-pi-2-x-2-dx-




Question Number 85346 by naka3546 last updated on 21/Mar/20
∫_( 0)   ^∞   ((cos (πx))/(π^2 +x^2 )) dx  =  ?
0cos(πx)π2+x2dx=?
Commented by abdomathmax last updated on 21/Mar/20
A =∫_0 ^∞   ((cos(πx))/(x^2  +π^2 ))dx ⇒2A =∫_(−∞) ^(+∞)  ((cos(πx))/(x^2  +π^2 ))dx  =Re(∫_(−∞) ^(+∞)  (e^(iπx) /(x^2 +π^2 ))dx) let ϕ(z) =(e^(iπz) /(z^2  +π^2 ))  we have ϕ(z)=(e^(iπz) /((z−iπ)(z+iπ)))  residus theirem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,iπ)  =2iπ(e^(iπ(iπ)) /(2iπ)) =e^(−π^2  )  ⇒ A =(e^(−π^2 ) /2)
A=0cos(πx)x2+π2dx2A=+cos(πx)x2+π2dx=Re(+eiπxx2+π2dx)letφ(z)=eiπzz2+π2wehaveφ(z)=eiπz(ziπ)(z+iπ)residustheiremgive+φ(z)dz=2iπRes(φ,iπ)=2iπeiπ(iπ)2iπ=eπ2A=eπ22
Answered by M±th+et£s last updated on 21/Mar/20
f(p)=∫_0 ^∞ ((cos(pπx))/(π^2 +x^2 )) dx⇒⇒⇒⌊(f(p))=∫_0 ^∞ ∫_0 ^∞ ((cos(pπx))/(π^2 +x^2 )) dx dp  =∫_0 ^∞ (1/(π^2 +x^2 ))∫_0 ^∞ e^(−ps)  cos(pπx) dx dp  =∫_0 ^∞ (1/((π^2 +x^2 )))((s/(s^2 +π^2 x^2 )))dx  =(s/(s−π^4 ))∫_0 ^∞ ((s^2 +π^2 x^2 −π^4 −π^2 x^2 )/((π^2 +x^2 )(s^2 +π^2 x^2 ))) dx  (s/(s^2 −π^4 ))∫((1/(π^2 +x^2 ))−(π^2 /(s^2 +π^2 x^2 )))dx  (s/(s^2 −π^4 ))[(1/π)tan^(−1) (x/π) −(π/s)tan^(−1) ((πx)/s)]_0 ^∞   (s/(s^2 −π^4 ))[(1/2)−(π^2 /(2s))]  (s/(s^2 −π^4 ))(((s−π^2 )/(2s)))=(1/(2(s+π^2 )))  f(p)=⌊^(−1) ((1/(s+π^2 )))  =(1/2)e^(−π^2    )
f(p)=0cos(pπx)π2+x2dx⇒⇒⇒(f(p))=00cos(pπx)π2+x2dxdp=01π2+x20epscos(pπx)dxdp=01(π2+x2)(ss2+π2x2)dx=ssπ40s2+π2x2π4π2x2(π2+x2)(s2+π2x2)dxss2π4(1π2+x2π2s2+π2x2)dxss2π4[1πtan1xππstan1πxs]0ss2π4[12π22s]ss2π4(sπ22s)=12(s+π2)f(p)=1(1s+π2)=12eπ2

Leave a Reply

Your email address will not be published. Required fields are marked *