Menu Close

0-dx-1-x-2-1-a-2-x-2-1-a-4-x-2-1-a-6-x-2-




Question Number 121659 by Dwaipayan Shikari last updated on 10/Nov/20
∫_0 ^∞ (dx/((1+x^2 )(1+a^2 x^2 )(1+a^4 x^2 )(1+a^6 x^2 ).....))
0dx(1+x2)(1+a2x2)(1+a4x2)(1+a6x2)..
Commented by Dwaipayan Shikari last updated on 10/Nov/20
∫_0 ^∞ (dx/((1+x^2 )(1+a^2 x^2 )))=(π/(2(a+1)))  ∫_0 ^∞ (1/((1+x^2 )(1+a^2 x^2 )(1+a^4 x^2 )))=(π/(2(1+a+a^3 )))  ∫_0 ^∞ (1/((1+x^2 )(1+a^2 x^2 )(1+a^4 x^2 )(1+a^6 x^2 )))=(π/(2(1+a+a^3 +a^6 )))  ∫_0 ^∞ (1/((1+x^2 )(1+a^2 x^2 )(1+a^4 x^2 )....))=(π/(2(1+a+a^3 +a^6 +a^(10) +C)))
0dx(1+x2)(1+a2x2)=π2(a+1)01(1+x2)(1+a2x2)(1+a4x2)=π2(1+a+a3)01(1+x2)(1+a2x2)(1+a4x2)(1+a6x2)=π2(1+a+a3+a6)01(1+x2)(1+a2x2)(1+a4x2).=π2(1+a+a3+a6+a10+C)
Commented by TANMAY PANACEA last updated on 10/Nov/20
excellent
excellent
Commented by Dwaipayan Shikari last updated on 10/Nov/20
Ramanujun showed this result without any proof.  I have tried to prove the result
Ramanujunshowedthisresultwithoutanyproof.Ihavetriedtoprovetheresult
Commented by Dwaipayan Shikari last updated on 10/Nov/20
Answered by mindispower last updated on 11/Nov/20
i found  ∫_0 ^∞ (dx/(Π_(k=0) ^n (1+a^(2k) x^(2k) )))=(π/2)Σ_(k=0) ^n (1/(a^k Π_(j=0,j≠k) ^n (1−(a^(2j) /a^(2k) ))))
ifound0dxnk=0(1+a2kx2k)=π2nk=01aknj=0,jk(1a2ja2k)
Commented by Dwaipayan Shikari last updated on 11/Nov/20
x is not varying
xisnotvarying
Answered by mindispower last updated on 11/Nov/20
let f(n)=∫_0 ^∞ (dx/((1+x^2 )......(1+x^2 a^(2n) )))  f(n)=(1/2)∫_(−∞) ^∞ (dx/((1+x^2 ).....(1+x^2 a^(2n) )))=(1/2)∫_(−∞) ^∞ g(x)dx  integrat in complex uper half plan Im(z)>0  1+a^(2k) x^2 =0⇒x=+_− (i/a^k )  poles aret_k = (i/a^k ),k∈[0,...n]  Res(g,(i/a^k ))=lim_(x→(i/a^k )) (x−(i/a^k ))g(x)=(1/(2ia^k )).Π_(j=0,j≠k) ^n (1/((1−(a^(2j) /a^(2k) ))))  f(n)=(1/2).2iπRes(g,t_k ,k∈[0,n])  =(1/2).2iπΣ_(k≤n) (1/(2ia_k ))=(π/2)Σ_(k≤n) (1/a^k ).Π_(j=0,j≠k) ^n (1/((1−((a^j /a^k ))^2 )))
letf(n)=0dx(1+x2)(1+x2a2n)f(n)=12dx(1+x2)..(1+x2a2n)=12g(x)dxintegratincomplexuperhalfplanIm(z)>01+a2kx2=0x=+iakpolesaretk=iak,k[0,n]Res(g,iak)=limxiak(xiak)g(x)=12iak.nj=0,jk1(1a2ja2k)f(n)=12.2iπRes(g,tk,k[0,n])=12.2iπkn12iak=π2kn1ak.nj=0,jk1(1(ajak)2)

Leave a Reply

Your email address will not be published. Required fields are marked *