Question Number 121659 by Dwaipayan Shikari last updated on 10/Nov/20

Commented by Dwaipayan Shikari last updated on 10/Nov/20

Commented by TANMAY PANACEA last updated on 10/Nov/20

Commented by Dwaipayan Shikari last updated on 10/Nov/20

Commented by Dwaipayan Shikari last updated on 10/Nov/20

Answered by mindispower last updated on 11/Nov/20

Commented by Dwaipayan Shikari last updated on 11/Nov/20

Answered by mindispower last updated on 11/Nov/20
![let f(n)=∫_0 ^∞ (dx/((1+x^2 )......(1+x^2 a^(2n) ))) f(n)=(1/2)∫_(−∞) ^∞ (dx/((1+x^2 ).....(1+x^2 a^(2n) )))=(1/2)∫_(−∞) ^∞ g(x)dx integrat in complex uper half plan Im(z)>0 1+a^(2k) x^2 =0⇒x=+_− (i/a^k ) poles aret_k = (i/a^k ),k∈[0,...n] Res(g,(i/a^k ))=lim_(x→(i/a^k )) (x−(i/a^k ))g(x)=(1/(2ia^k )).Π_(j=0,j≠k) ^n (1/((1−(a^(2j) /a^(2k) )))) f(n)=(1/2).2iπRes(g,t_k ,k∈[0,n]) =(1/2).2iπΣ_(k≤n) (1/(2ia_k ))=(π/2)Σ_(k≤n) (1/a^k ).Π_(j=0,j≠k) ^n (1/((1−((a^j /a^k ))^2 )))](https://www.tinkutara.com/question/Q121737.png)