0-dx-1-x-2-2x-x-2-1-pi-ln-3-2-3-solution-1-x-t-2-0-dt-1-t-4-2-0-1-dt-1-t- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 173149 by mnjuly1970 last updated on 07/Jul/22 ∫0∞dx1+x.(2+2x+x2)=1σ(π−ln(3+23))σ=?−−solution−−Ω=1+x=t2∫0∞dt1+t4=2∫01dt1+t4Ψ=∫01dt1+t4=12∫011+t2−(t−2−1)1+t4dt=12∫011+t21+t4dt+12∫011−t21+t4dtΦ=∫011+t21+t4dt=∫01t−2+1t−2+t2dt=∫011+t−2(t−t−1)2+2=sub[12tan−1(t−t−1)]01=π22∗ϕ=∫011−t21+t4dt=∫01t−2−1(t+t−1)2−2dt=t+1t=u−∫2∞du(u−2)(u+2)=−122[ln(u−2u+2)]2∞=122ln(2−22+2)ϕ=−122ln(3+22)∗∗(∗)&(∗∗)::Ω=2Ψ=(Φ+ϕ)=122(π−ln(3+22)…m.n Commented by Tawa11 last updated on 11/Jul/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-n-x-arcsin-x-dx-Next Next post: If-x-2-2-2-3-2-1-3-then-prove-that-x-3-6x-2-6x-2-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.