Menu Close

0-dx-1-x-2-2x-x-2-1-pi-ln-3-2-3-solution-1-x-t-2-0-dt-1-t-4-2-0-1-dt-1-t-




Question Number 173149 by mnjuly1970 last updated on 07/Jul/22
       ∫_0 ^(  ∞) (( dx)/( (√(1+x)) .(2+2x +x^( 2) )))=(1/σ) (π−ln(3+2(√3) ))                σ = ?          −−  solution −−       Ω=^((√(1+x)) =t)  2∫_0 ^( ∞) (dt/( 1+ t^( 4) )) = 2∫_0 ^( 1) (dt/(1 + t^( 4) ))        Ψ = ∫_0 ^( 1) (( dt)/(1+t^( 4) )) = (1/2)∫_0 ^( 1) (( 1+t^( 2) −(t^( −2) −1))/(1+t^( 4) ))dt           = (1/2) ∫_0 ^( 1) (( 1+ t^( 2) )/(1+t^( 4) )) dt +(1/2) ∫_0 ^( 1) ((1−t^( 2) )/(1+ t^( 4) )) dt            Φ=∫_0 ^( 1) ((1 +t^( 2) )/(1+t^( 4) ))dt =∫_0 ^( 1) (( t^( −2) +1)/(t^( −2) + t^( 2) )) dt               =∫_0 ^( 1) ((  1+t^( −2) )/(( t^  − t^( −1) )^( 2) +2)) =^(sub)  [ (1/( (√2))) tan^( −1) (t −t^( −1) )]_0 ^1 =(π/(2(√2)))      ∗            𝛗 = ∫_0 ^( 1) (( 1−t^( 2) )/(1+t^( 4) )) dt = ∫_0 ^( 1) ((t^( −2) −1)/(( t +t^( −1) )^( 2) −2))dt              =^(t +(1/t) =u) −∫_2 ^( ∞) (du/(( u−(√2) )(u+ (√2) )))                  =   ((−1)/(2(√2))) [ln(((u −(√2))/(u+(√2))))]_2 ^( ∞) =(1/(2(√2))) ln(((2−(√2))/(2+(√2))) )               𝛗 =−(1/(2(√2))) ln( 3 +2(√2) )     ∗∗     (∗) & (∗∗)::       Ω=2Ψ=  (Φ + 𝛗) =(1/(2(√2))) ( π −ln( 3 +2(√2) )  ...■m.n
0dx1+x.(2+2x+x2)=1σ(πln(3+23))σ=?solutionΩ=1+x=t20dt1+t4=201dt1+t4Ψ=01dt1+t4=12011+t2(t21)1+t4dt=12011+t21+t4dt+12011t21+t4dtΦ=011+t21+t4dt=01t2+1t2+t2dt=011+t2(tt1)2+2=sub[12tan1(tt1)]01=π22ϕ=011t21+t4dt=01t21(t+t1)22dt=t+1t=u2du(u2)(u+2)=122[ln(u2u+2)]2=122ln(222+2)ϕ=122ln(3+22)()&()::Ω=2Ψ=(Φ+ϕ)=122(πln(3+22)◼m.n
Commented by Tawa11 last updated on 11/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *