Menu Close

0-dx-1-x-n-




Question Number 42157 by Tawa1 last updated on 19/Aug/18
 ∫_( 0) ^( ∞)   (dx/((1 + x^n )))
$$\:\int_{\:\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{dx}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{n}} \right)} \\ $$
Commented by math khazana by abdo last updated on 19/Aug/18
changement  x^n  =t  give x= t^(1/n)  ⇒  ∫_0 ^∞      (dx/(1+x^n ))  ∫_0 ^∞    (1/(1+t)) (1/n) t^((1/n)−1)  dt  =(1/n) ∫_0 ^∞     (t^((1/n)−1) /(1+t ))  =(1/n) (π/(sin((π/n)))) =(π/(nsin((π/n))))  (we can take n≥2 ) and  I have used the  result   ∫_0 ^∞   (t^(a−1) /(1+t)) dt =(π/(sin(πa))) if 0<a<1 .
$${changement}\:\:{x}^{{n}} \:={t}\:\:{give}\:{x}=\:{t}^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}}\:\frac{\mathrm{1}}{{n}}\:{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{\mathrm{1}+{t}\:}\:\:=\frac{\mathrm{1}}{{n}}\:\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)}\:=\frac{\pi}{{nsin}\left(\frac{\pi}{{n}}\right)} \\ $$$$\left({we}\:{can}\:{take}\:{n}\geqslant\mathrm{2}\:\right)\:{and}\:\:{I}\:{have}\:{used}\:{the} \\ $$$${result}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}\:{if}\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Commented by Tawa1 last updated on 19/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by math khazana by abdo last updated on 20/Aug/18
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *