Menu Close

0-dx-3-2sinx-cosx-




Question Number 17034 by arnabpapu550@gmail.com last updated on 30/Jun/17
∫_0 ^( Π) (dx/(3+2sinx+cosx))
0Πdx3+2sinx+cosx
Answered by Arnab Maiti last updated on 03/Jul/17
=∫_0 ^( Π) (dx/(3+2×((2tan(x/2))/(1+tan^2 (x/2)))+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))  =∫_0 ^( Π) ((sec^2 (x/2)dx)/(3(1+tan^2 (x/2))+4tan(x/2)+1−tan^2 (x/2)))   put tan(x/2)=z⇒(1/2)sec^2 (x/2)dx=dz  =∫_0 ^( ∞) ((2dz)/(2z^2 +4z+4))  =∫_0 ^∞ (dz/(z^2 +2z+2))=∫_0 ^∞ (dz/(z^2 +2×1×z+1^2 +1))  =∫_0 ^∞ (dz/((z+1)^2 +1))  =[tan^(−1) (z+1)]_0 ^∞ =[tan^(−1) (∞)−tan^(−1) (1)]  =(Π/2)−(Π/4)=(Π/4)
=0Πdx3+2×2tanx21+tan2x2+1tan2x21+tan2x2=0Πsec2x2dx3(1+tan2x2)+4tanx2+1tan2x2puttanx2=z12sec2x2dx=dz=02dz2z2+4z+4=0dzz2+2z+2=0dzz2+2×1×z+12+1=0dz(z+1)2+1=[tan1(z+1)]0=[tan1()tan1(1)]=Π2Π4=Π4

Leave a Reply

Your email address will not be published. Required fields are marked *