Menu Close

0-dx-x-1-x-2-2-let-x-tan-t-dx-sec-2-t-dt-0-pi-2-sec-2-t-dt-tan-t-sec-t-2-0-pi-2-dt-sin-t-1-2-0-pi-2-dt-cos-1-2-t-sin-1-2-t-4-0-




Question Number 85676 by john santu last updated on 24/Mar/20
∫ _0 ^∞  (dx/((x+(√(1+x^2 )))^2 ))  let x = tan t ⇒dx=sec^2 t dt  ∫_0 ^(π/2)  ((sec^2 t dt)/((tan t+sec t)^2 )) =   ∫_0 ^(π/2)  (dt/((sin t+1)^2 )) = ∫_0 ^(π/2)  (dt/((cos (1/2)t+sin (1/2)t)^4 ))  = ∫_0 ^(π/2)  (dt/(4cos^4  ((1/2)t−(π/4))))  = (1/4)∫_0 ^(π/2)  sec^4 ((1/2)t−(π/4)) dt  [ let (1/2)t−(π/4)= u]  = (1/4)∫_(−(π/4)) ^0  sec^4 u ×2du  =(1/2)∫ _(−(π/4)) ^0 (tan^2 u+1) d(tan u)  = (1/2) [(1/3)tan^3 u + tan u ]_(−(π/4)) ^0   = (1/2) [ 0−(−(1/3)−1)]= (2/3)
0dx(x+1+x2)2letx=tantdx=sec2tdtπ20sec2tdt(tant+sect)2=π20dt(sint+1)2=π20dt(cos12t+sin12t)4=π20dt4cos4(12tπ4)=14π20sec4(12tπ4)dt[let12tπ4=u]=140π4sec4u×2du=120π4(tan2u+1)d(tanu)=12[13tan3u+tanu]π40=12[0(131)]=23
Commented by jagoll last updated on 24/Mar/20
i try by  Euler substitution  let (√(1+x^2 )) = x+t   1+x^2  = x^2 +2xt+t^2   2xt+t^2 =1 ⇒ x = ((1−t^2 )/(2t))  dx = ((−t^2 −1)/(2t^2 )) dt  ∫ (1/((((1−t^2 )/(2t))+((1+t^2 )/(2t)))^2 )) × (((−t^2 −1)/(2t^2 ))) dt  ∫ (t^2 /(2t^2 )) ×(−t^2 −1) dt = −(1/2)∫ (t^2 +1)dt  −(1/2) [(1/3)t^3 +t ] =−(1/6)t [t^2 +3 ]  −(1/6) ((√(1+x^2 )) −x ) (2x^2 +4−2x(√(1+x^2 )) )  lim_(x→∞)  −(1/6)((√(1+x^2 ))−x)(2x^2 +4−2x(√(1+x^2 ))) +(4/6)  = (2/3)
itrybyEulersubstitutionlet1+x2=x+t1+x2=x2+2xt+t22xt+t2=1x=1t22tdx=t212t2dt1(1t22t+1+t22t)2×(t212t2)dtt22t2×(t21)dt=12(t2+1)dt12[13t3+t]=16t[t2+3]16(1+x2x)(2x2+42x1+x2)limx16(1+x2x)(2x2+42x1+x2)+46=23
Commented by john santu last updated on 24/Mar/20
good
good
Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20
∫_0 ^∞ (1/((x+(√(1+x^2 )))^n ))dx=(n/(n^2 −1))  common solution
01(x+1+x2)ndx=nn21commonsolution
Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20
comment pls
commentpls
Commented by john santu last updated on 24/Mar/20
waw... it generally solution sir?
wawitgenerallysolutionsir?
Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20
yeah .n=3 check ((3/8)) pls try
yeah.n=3check(38)plstry
Commented by jagoll last updated on 24/Mar/20
but n ≠ 1?
butn1?
Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20
sry (n/((n^2 −1)))  ,[n^2 −1≠0] so  (n≠1) & (n≠−1)
sryn(n21),[n210]so(n1)&(n1)
Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20
thank you  for direct me
thankyoufordirectme
Commented by mathmax by abdo last updated on 24/Mar/20
let A_n =∫_0 ^∞   (dx/((x+(√(1+x^2 )))^n ))  we do the changement x=sh(t) ⇒  A_n =∫_0 ^∞   ((ch(t))/((sh(t)+ch(t))^n ))dt =∫_0 ^∞   ((ch(t))/((((e^t −e^(−t) )/2)+((e^t  +e^(−t) )/2))^n ))dt    =∫_0 ^∞  e^(−nt) (((e^t  +e^(−t) )/2))dt =(1/2) ∫_0 ^∞  ( e^((−n+1)t)  +e^(−(n+1)t) )dt  =(1/2)[(1/(1−n))e^((1−n)t)  −(1/(n+1))e^(−(n+1)t) ]_0 ^(+∞)   =(1/2){−(1/(1−n))+(1/(n+1))} =(1/2)((1/(n+1))+(1/(n−1))) =(1/2)(((2n)/(n^2 −1))) ⇒  A_n =(n/(n^2 −1))   (n>1)  so  ∫_0 ^∞    (dx/((x+(√(1+x^2 )))^2 )) =(2/(2^2 −1)) =(2/3)
letAn=0dx(x+1+x2)nwedothechangementx=sh(t)An=0ch(t)(sh(t)+ch(t))ndt=0ch(t)(etet2+et+et2)ndt=0ent(et+et2)dt=120(e(n+1)t+e(n+1)t)dt=12[11ne(1n)t1n+1e(n+1)t]0+=12{11n+1n+1}=12(1n+1+1n1)=12(2nn21)An=nn21(n>1)so0dx(x+1+x2)2=2221=23
Commented by john santu last updated on 24/Mar/20
thank you sir for your short cut
thankyousirforyourshortcut
Commented by john santu last updated on 24/Mar/20
indonesian sir
indonesiansir
Commented by mathmax by abdo last updated on 24/Mar/20
where are you from sir john...
whereareyoufromsirjohn
Commented by mathmax by abdo last updated on 24/Mar/20
aah good  sir ...
aahgoodsir
Commented by john santu last updated on 25/Mar/20
why sir? if you where you   come sir?
whysir?ifyouwhereyoucomesir?

Leave a Reply

Your email address will not be published. Required fields are marked *