Question Number 150259 by mathdanisur last updated on 10/Aug/21

Answered by Ar Brandon last updated on 10/Aug/21
![I(s)=∫_0 ^∞ ((e^(−st) (cosh(2t)−cosh(5t)))/t)dt I ′(s)=−∫_0 ^∞ e^(−st) (cosh(2t)−cosh(5t))dt =−(1/2)∫_0 ^∞ e^(−st) (e^(2t) +e^(−2t) −e^(5t) −e^(−5t) )dt =−(1/2)[(e^(−(s−2)t) /(2−s))−(e^(−(s+2)t) /(s+2))−(e^(−(s−5)t) /(5−s))+(e^(−(s+5)t) /(s+5))]_0 ^∞ =(1/2)((1/(2−s))−(1/(s+2))−(1/(5−s))+(1/(s+5))) I(s)=(1/2)(ln∣s+5∣+ln∣s−5∣−ln∣s+2∣−ln∣s−2∣)+C =(1/2)ln∣((s^2 −25)/(s^2 −4))∣+C. I(+∞)=0=C ⇒I(s)=(1/2)ln∣((s^2 −25)/(s^2 −4))∣](https://www.tinkutara.com/question/Q150274.png)
Commented by mathdanisur last updated on 10/Aug/21

Commented by Ar Brandon last updated on 10/Aug/21

Commented by Ar Brandon last updated on 10/Aug/21

Commented by mathdanisur last updated on 10/Aug/21
