Menu Close

0-e-st-cosh-2t-cosh-5t-dt-t-




Question Number 150259 by mathdanisur last updated on 10/Aug/21
∫_( 0) ^( ∞)  ((e^(−st) (cosh(2t)−cosh(5t))dt)/t)=?
0est(cosh(2t)cosh(5t))dtt=?
Answered by Ar Brandon last updated on 10/Aug/21
I(s)=∫_0 ^∞ ((e^(−st) (cosh(2t)−cosh(5t)))/t)dt  I ′(s)=−∫_0 ^∞ e^(−st) (cosh(2t)−cosh(5t))dt             =−(1/2)∫_0 ^∞ e^(−st) (e^(2t) +e^(−2t) −e^(5t) −e^(−5t) )dt             =−(1/2)[(e^(−(s−2)t) /(2−s))−(e^(−(s+2)t) /(s+2))−(e^(−(s−5)t) /(5−s))+(e^(−(s+5)t) /(s+5))]_0 ^∞              =(1/2)((1/(2−s))−(1/(s+2))−(1/(5−s))+(1/(s+5)))             I(s)=(1/2)(ln∣s+5∣+ln∣s−5∣−ln∣s+2∣−ln∣s−2∣)+C                      =(1/2)ln∣((s^2 −25)/(s^2 −4))∣+C. I(+∞)=0=C                       ⇒I(s)=(1/2)ln∣((s^2 −25)/(s^2 −4))∣
I(s)=0est(cosh(2t)cosh(5t))tdtI(s)=0est(cosh(2t)cosh(5t))dt=120est(e2t+e2te5te5t)dt=12[e(s2)t2se(s+2)ts+2e(s5)t5s+e(s+5)ts+5]0=12(12s1s+215s+1s+5)I(s)=12(lns+5+lns5lns+2lns2)+C=12lns225s24+C.I(+)=0=CI(s)=12lns225s24
Commented by mathdanisur last updated on 10/Aug/21
Cool Ser, Thank You
CoolSer,ThankYou
Commented by Ar Brandon last updated on 10/Aug/21
L^(−1) {((s+1)/(s^2 −16s+100))}=L^(−1) {((s+1)/((s−8)^2 +6^2 ))}  =L^(−1) {((s−8)/((s−8)^2 +6^2 ))+(9/((s−8)^2 +6^2 ))}  =cos(6(s−8))+(9/6)sin(6(s−8))
L1{s+1s216s+100}=L1{s+1(s8)2+62}=L1{s8(s8)2+62+9(s8)2+62}=cos(6(s8))+96sin(6(s8))
Commented by Ar Brandon last updated on 10/Aug/21
You deleted your previous post.
Youdeletedyourpreviouspost.
Commented by mathdanisur last updated on 10/Aug/21
Cool Ser, Thank You
CoolSer,ThankYou

Leave a Reply

Your email address will not be published. Required fields are marked *