Menu Close

0-e-x-3-sin-x-3-x-dx-2-2-m-n-




Question Number 152653 by mnjuly1970 last updated on 30/Aug/21
    Ω :=∫_0 ^( ∞) (( e^( −x^( 3) ) . sin (x^( 3)  ))/x)dx= ((ζ (2 ))/2)   m.n...
$$ \\ $$$$\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{3}} } .\:{sin}\:\left({x}^{\:\mathrm{3}} \:\right)}{{x}}{dx}=\:\frac{\zeta\:\left(\mathrm{2}\:\right)}{\mathrm{2}} \\ $$$$\:{m}.{n}… \\ $$$$ \\ $$
Answered by qaz last updated on 30/Aug/21
Ω=(1/3)∫_0 ^∞ ((e^(−x) sin x)/x)dx  =−(1/3)∫_0 ^1 ds∫_0 ^∞ e^(−sx) sin xdx+(1/3)∫_0 ^∞ ((sin x)/x)dx  =−(1/3)∫_0 ^1 (1/(s^2 +1))ds+(π/6)  =−(1/3)∙(π/4)+(π/6)  =(π/(12))
$$\Omega=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{e}^{−\mathrm{x}} \mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ds}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{sx}} \mathrm{sin}\:\mathrm{xdx}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{s}^{\mathrm{2}} +\mathrm{1}}\mathrm{ds}+\frac{\pi}{\mathrm{6}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\centerdot\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{6}} \\ $$$$=\frac{\pi}{\mathrm{12}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *