Menu Close

0-e-x-cos-x-2-dx-Discuss-the-convergence-of-this-generalised-intergral-Please-help-




Question Number 97563 by 675480065 last updated on 08/Jun/20
∫_0 ^(+∞) e^(−x) cos(x^2 )dx.  Discuss the convergence of this   generalised intergral.  Please help
0+excos(x2)dx.Discusstheconvergenceofthisgeneralisedintergral.Pleasehelp
Answered by mathmax by abdo last updated on 08/Jun/20
I =∫_0 ^∞  e^(−x)  cos(x^2 )dx   for all a>0  x→e^(−x)  cos(x^2 )is continue on [0,a] so  integrable on[0,a]  at [a,+∞[  lim_(x→+∞) e^(−x)  cos(x^2 )dx =0 ⇒  ∫_a ^(+∞)  e^(−x)  cos(x^2 )dx cv ⇒∫_0 ^∞  e^(−x)  cos(x^2 )dx converge.  the vslue  I =Re( ∫_0 ^∞ e^(−x+ix^2 ) dx) and   ∫_0 ^∞  e^(−x+ix^2 ) dx =∫_0 ^∞  e^(((√i)x)^2 −2(√i)x×(1/(2(√i)))  +((1/(2(√i))))^2 −((1/(2(√i))))^2 ) dx  =∫_0 ^∞    e^(((√i)x−(1/(2(√i))))^2 −(1/(4i)))  dx =e^(i/4)  ∫_0 ^∞  e^(((√i)x−(1/(2(√i))))^2 ) dx =_((√i)x−(1/(2(√i)))=t)   e^(i/4)  ∫_(−(1/(2(√i)))) ^(+∞)  e^(−t^2 ) (dt/( (√i)))  =e^(−((iπ)/4))  e^(i/4)  ∫_(−(1/2)e^(−((iπ)/4)) ) ^(+∞)  e^(−t^2 ) dt  =e^((−(π/4)+(1/4))i)  {((√π)/2)−∫_0 ^(−(1/2)e^(−t^2 ) ) dt}...be continued...
I=0excos(x2)dxforalla>0xexcos(x2)iscontinueon[0,a]sointegrableon[0,a]at[a,+[limx+excos(x2)dx=0a+excos(x2)dxcv0excos(x2)dxconverge.thevslueI=Re(0ex+ix2dx)and0ex+ix2dx=0e(ix)22ix×12i+(12i)2(12i)2dx=0e(ix12i)214idx=ei40e(ix12i)2dx=ix12i=tei412i+et2dti=eiπ4ei412eiπ4+et2dt=e(π4+14)i{π2012et2dt}becontinued
Commented by 675480065 last updated on 08/Jun/20
thanks teacher
thanksteacher
Commented by abdomathmax last updated on 08/Jun/20
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *