Menu Close

0-ln-x-e-x-e-x-dx-




Question Number 155207 by mathdanisur last updated on 26/Sep/21
𝛀 =∫_( 0) ^( ∞) ((ln(x))/(e^x  + e^(βˆ’x) )) dx = ?
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{e}^{βˆ’\boldsymbol{\mathrm{x}}} }\:\mathrm{dx}\:=\:? \\ $$
Answered by mindispower last updated on 27/Sep/21
Ξ©=fβ€²(0),fβ€²(a)=∫_0 ^∞ (x^a /(e^x +e^(βˆ’x) ))dx  =∫_0 ^∞ x^a Ξ£_k (βˆ’1)^k e^(βˆ’(1+2k)x) dx  =Ξ£_(kβ‰₯0) ∫_0 ^∞ ((x^a e^(βˆ’x) )/((1+2k)^(a+1) ))dx=Ξ£_(kβ‰₯0) (βˆ’1)^k ((Ξ“(1+a))/((1+2k)^(a+1) ))  =((Ξ“(1+a))/2^(1+a) )Ξ£_(kβ‰₯0) (1/((k+(1/4))^(a+1) ))βˆ’(1/((k+(3/4))^(a+1) ))  =((Ξ“(1+a))/2^(1+a) )(ΞΆ((1/4),a+1)βˆ’ΞΆ((3/4),a+1))  know using Steiljis constante
$$\Omega={f}'\left(\mathrm{0}\right),{f}'\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}} }{{e}^{{x}} +{e}^{βˆ’{x}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} \underset{{k}} {\sum}\left(βˆ’\mathrm{1}\right)^{{k}} {e}^{βˆ’\left(\mathrm{1}+\mathrm{2}{k}\right){x}} {dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}} {e}^{βˆ’{x}} }{\left(\mathrm{1}+\mathrm{2}{k}\right)^{{a}+\mathrm{1}} }{dx}=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(βˆ’\mathrm{1}\right)^{{k}} \frac{\Gamma\left(\mathrm{1}+{a}\right)}{\left(\mathrm{1}+\mathrm{2}{k}\right)^{{a}+\mathrm{1}} } \\ $$$$=\frac{\Gamma\left(\mathrm{1}+{a}\right)}{\mathrm{2}^{\mathrm{1}+{a}} }\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{a}+\mathrm{1}} }βˆ’\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{{a}+\mathrm{1}} } \\ $$$$=\frac{\Gamma\left(\mathrm{1}+{a}\right)}{\mathrm{2}^{\mathrm{1}+{a}} }\left(\zeta\left(\frac{\mathrm{1}}{\mathrm{4}},{a}+\mathrm{1}\right)βˆ’\zeta\left(\frac{\mathrm{3}}{\mathrm{4}},{a}+\mathrm{1}\right)\right) \\ $$$${know}\:{using}\:{Steiljis}\:{constante} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *