Menu Close

0-ln2-1-cosh-x-ln4-dx-




Question Number 83205 by Rio Michael last updated on 28/Feb/20
∫_0 ^(ln2) (1/(cosh(x + ln4)))dx =
$$\int_{\mathrm{0}} ^{{ln}\mathrm{2}} \frac{\mathrm{1}}{{cosh}\left({x}\:+\:{ln}\mathrm{4}\right)}{dx}\:= \\ $$
Commented by mathmax by abdo last updated on 28/Feb/20
I =_(x+ln4=t)    ∫_(2ln2) ^(ln(6))  (dt/(ch(t))) =∫_(2ln2) ^(ln6)  ((2dt)/(e^t  +e^(−t) ))  =_(e^t =u)      ∫_4 ^6   ((2du)/(u(u+u^(−1) ))) =2∫_4 ^6    (du/(u^2  +1)) =2[arctan(u)]_4 ^6   =2(arctan(6)−arctan(4))
$${I}\:=_{{x}+{ln}\mathrm{4}={t}} \:\:\:\int_{\mathrm{2}{ln}\mathrm{2}} ^{{ln}\left(\mathrm{6}\right)} \:\frac{{dt}}{{ch}\left({t}\right)}\:=\int_{\mathrm{2}{ln}\mathrm{2}} ^{{ln}\mathrm{6}} \:\frac{\mathrm{2}{dt}}{{e}^{{t}} \:+{e}^{−{t}} } \\ $$$$=_{{e}^{{t}} ={u}} \:\:\:\:\:\int_{\mathrm{4}} ^{\mathrm{6}} \:\:\frac{\mathrm{2}{du}}{{u}\left({u}+{u}^{−\mathrm{1}} \right)}\:=\mathrm{2}\int_{\mathrm{4}} ^{\mathrm{6}} \:\:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:=\mathrm{2}\left[{arctan}\left({u}\right)\right]_{\mathrm{4}} ^{\mathrm{6}} \\ $$$$=\mathrm{2}\left({arctan}\left(\mathrm{6}\right)−{arctan}\left(\mathrm{4}\right)\right) \\ $$
Commented by Rio Michael last updated on 28/Feb/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *