Question Number 158420 by akolade last updated on 03/Nov/21
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{lnx}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Answered by puissant last updated on 03/Nov/21
$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}+\int_{\mathrm{1}} ^{\infty} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}+\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{lnx}}{{x}^{\mathrm{2}} −\mathrm{1}}{dx}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} {lnxdx}\:=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {lnxdx} \\ $$$$=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{2}×\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…………\mathscr{L}{e}\:{puissant}………… \\ $$