Menu Close

0-log-2-x-sin-x-2-dx-i-had-solved-that-already-and-answ-pi-2-2pi-32-




Question Number 130979 by mnjuly1970 last updated on 31/Jan/21
                          φ =∫_0 ^( ∞) log^2 (x)sin(x^2 )dx=?       i had solved that already  and:     answ  : = −((π^2 (√(2π)) )/(32))
ϕ=0log2(x)sin(x2)dx=?ihadsolvedthatalreadyand:answ:=π22π32
Commented by Dwaipayan Shikari last updated on 31/Jan/21
∫_0 ^∞ ((tanx)/x)dx  ⇒Diverges
0tanxxdxDiverges
Commented by Dwaipayan Shikari last updated on 31/Jan/21
∫_0 ^∞ ((sinx)/x)dx=∫_0 ^∞ ∫_0 ^∞ e^(−xt) sinx dtdx  =(1/(2i))∫_0 ^∞ (1/(t−i))−(1/(t+i))dt  =∫_0 ^∞ (1/(t^2 +1))dt=(π/2)
0sinxxdx=00extsinxdtdx=12i01ti1t+idt=01t2+1dt=π2
Commented by mnjuly1970 last updated on 31/Jan/21
yes it is convergent   i will prepare   other question...
yesitisconvergentiwillprepareotherquestion
Answered by mnjuly1970 last updated on 31/Jan/21
Answered by mnjuly1970 last updated on 31/Jan/21
Answered by Dwaipayan Shikari last updated on 31/Jan/21
I(a)=∫_0 ^∞ x^a sin(x^2 )dx  I(a)=(1/(2i))∫_0 ^∞ x^a e^(ix^2 ) −x^a e^(−ix^2 ) dx         x^2 =iu    x^2 =−ij  I(a)=(1/4)∫_0 ^∞ x^(a−1) e^(−u) du −x^(a−1) e^(−j) dj  I(a)=(((i)^((a−1)/2) )/4)∫_0 ^∞ u^((a−1)/2) e^(−u) +(−i)^(a−1) (1/4)∫_0 ^∞ j^((a−1)/2) e^(−j) dj  =((Γ(((a+1)/2)))/2)cos((π/4)(a+1))  I′(a)=((Γ′(((a+1)/2)))/4)cos((π/4)(a+1))−(π/4) ((Γ(((a+1)/2)))/2)sin((π/4)(a+1))  I′′(a)=((Γ′′(((a+1)/2)))/8)cos((π/4)(a+1))−(π/4).((Γ′(((a+1)/2)))/4)sin((π/4)(a+1))−(π/(16))Γ′(((a+1)/2))sin((π/4)(a+1))−(π^2 /(32)).Γ(((a+1)/2))cos((π/4)(a+1))  I′′(0)=((Γ′′((1/2)))/(2(√2)))−((πΓ′((1/2)))/( 8(√2)))−(π^(5/2) /(32))                    =((πψ((1/2))+ψ′((1/2))(√π))/(2(√2)))−((π(√π))/(8(√2)))ψ((1/2))−(π^(5/2) /(32))      =((π(√π))/(8(√2)))(γ+log(4))−(π^(5/2) /(32))−((π(γ+log(4))/(2(√2)))+((ψ′((1/2))(√π))/(2(√2)))
I(a)=0xasin(x2)dxI(a)=12i0xaeix2xaeix2dxx2=iux2=ijI(a)=140xa1euduxa1ejdjI(a)=(i)a1240ua12eu+(i)a1140ja12ejdj=Γ(a+12)2cos(π4(a+1))I(a)=Γ(a+12)4cos(π4(a+1))π4Γ(a+12)2sin(π4(a+1))I(a)=Γ(a+12)8cos(π4(a+1))π4.Γ(a+12)4sin(π4(a+1))π16Γ(a+12)sin(π4(a+1))π232.Γ(a+12)cos(π4(a+1))I(0)=Γ(12)22πΓ(12)82π5232=πψ(12)+ψ(12)π22ππ82ψ(12)π5232=ππ82(γ+log(4))π5232π(γ+log(4)22+ψ(12)π22
Answered by mathmax by abdo last updated on 31/Jan/21
Φ=_(x=(√t))   ∫_0 ^∞  ln^2 ((√t))sin(t)(2t)dt=(1/2)∫_0 ^∞  ln^2 (t) tsint dt  ϕ(a) =∫_0 ^∞  t^(a+1)  sint dt  =∫_0 ^∞ e^((a+1)lnt) sint dt ⇒ϕ^′ (a)=∫_0 ^∞ lnt .e^((a+1)lnt) sint dt  ⇒ϕ^((2)) (a) =∫_0 ^∞ ln^2 t .t^(a+1) sint dt ⇒ϕ^((2)) (0)=∫_0 ^∞ ln^2 t .tsint dt =2Φ  ϕ(a) =−Im(∫_0 ^∞  t^(a+1)  e^(−it) dt) and   ∫_0 ^∞  t^(a+1)  e^(−it) dt =_(it=u)   ∫_0 ^∞  ((u/i))^(a+1)  e^(−u)  (du/i)  =(1/i^(a+2) )∫_0 ^∞  u^(a+2−1)  e^(−u)  du =(1/((e^((iπ)/2) )^(a+2) ))×Γ(a+2)  =e^(−((iπ)/2)(a+2)) .Γ(a+2) =Γ(a+2){cos((π/2)(a+2))−isin((π/2)(a+2))} ⇒  ϕ(a)=sin(((πa)/2)+π).Γ(a+2) =−sin(((πa)/2)).Γ(a+2)   (witha>−2)  Γ(a+2) =Γ(a+1 +1) =(a+1)Γ(a+1) =a(a+1)Γ(a) ⇒  ϕ(a) =−a(a+1)sin(((πa)/2)).Γ(a)=w(a).Γ(a) ⇒  ϕ^′ (a) =W^, (a).Γ(a)+w(a).Γ^′ (a)  w^′ (a)=−{(2a+1)sin(((πa)/2))+(a^2  +a)(π/2)cos(((πa)/2))} ⇒  ϕ^, (a)=−{(2a+1)sin(((πa)/2))+(π/2)(a^2  +a)cos(((πa)/2))}.Γ(a)  −(a^2  +a)sin(((πa)/2)).Γ^′ (a).....be continued...
Φ=x=t0ln2(t)sin(t)(2t)dt=120ln2(t)tsintdtφ(a)=0ta+1sintdt=0e(a+1)lntsintdtφ(a)=0lnt.e(a+1)lntsintdtφ(2)(a)=0ln2t.ta+1sintdtφ(2)(0)=0ln2t.tsintdt=2Φφ(a)=Im(0ta+1eitdt)and0ta+1eitdt=it=u0(ui)a+1eudui=1ia+20ua+21eudu=1(eiπ2)a+2×Γ(a+2)=eiπ2(a+2).Γ(a+2)=Γ(a+2){cos(π2(a+2))isin(π2(a+2))}φ(a)=sin(πa2+π).Γ(a+2)=sin(πa2).Γ(a+2)(witha>2)Γ(a+2)=Γ(a+1+1)=(a+1)Γ(a+1)=a(a+1)Γ(a)φ(a)=a(a+1)sin(πa2).Γ(a)=w(a).Γ(a)φ(a)=W,(a).Γ(a)+w(a).Γ(a)w(a)={(2a+1)sin(πa2)+(a2+a)π2cos(πa2)}φ,(a)={(2a+1)sin(πa2)+π2(a2+a)cos(πa2)}.Γ(a)(a2+a)sin(πa2).Γ(a)..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *