Menu Close

0-log-x-1-x-2-2-dx-




Question Number 150404 by mathdanisur last updated on 12/Aug/21
Ω =∫_( 0) ^( ∞)  ((log(x))/((1 + x^2 )^2 )) dx = ?
Ω=0log(x)(1+x2)2dx=?
Answered by Ar Brandon last updated on 12/Aug/21
Ω(a)=∫_0 ^∞ ((lnx)/(a^2 +x^2 ))dx, x=atanϑ            =∫_0 ^(π/2) ((ln(atanϑ))/(a^2 +a^2 tan^2 ϑ))∙asec^2 ϑdϑ           =(1/a)∫_0 ^(π/2) (lna+ln(tanϑ))dϑ=((πlna)/(2a))  ⇒Ω′(a)=(π/2)((1/a^2 )−((lna)/a^2 ))=−∫_0 ^∞ ((2alnx)/((a^2 +x^2 )^2 ))dx  ⇒∫_0 ^∞ ((lnx)/((a^2 +x^2 )^2 ))dx=−(π/(4a))((1/a^2 )−((lna)/a^2 ))  ⇒∫_0 ^∞ ((lnx)/((1+x^2 )^2 ))dx=−(π/4)
Ω(a)=0lnxa2+x2dx,x=atanϑ=0π2ln(atanϑ)a2+a2tan2ϑasec2ϑdϑ=1a0π2(lna+ln(tanϑ))dϑ=πlna2aΩ(a)=π2(1a2lnaa2)=02alnx(a2+x2)2dx0lnx(a2+x2)2dx=π4a(1a2lnaa2)0lnx(1+x2)2dx=π4
Commented by mathdanisur last updated on 12/Aug/21
Thank You Ser
ThankYouSer
Answered by ajfour last updated on 12/Aug/21
Ω=ln x∫(dx/((1+x^2 )^2 ))       +∫{(1/x)∫(dx/((1+x^2 )^2 ))}dx  Ω=Gln x+∫ ((Gdx)/x)  G=∫(dx/((1+x^2 )^2 ))=(1/(2x))(−(1/(1+x^2 )))                                −(1/2)∫(dx/(x^2 (1+x^2 )))  let  x=tan θ  G=(1/2)∫(1+cos 2θ)dθ   =((2θ+sin 2θ)/4)=((tan^(−1) x)/2)+(x/(2(1+x^2 )))  2(Gln x)=(ln x)tan^(−1) x                                 +((xln x)/(1+x^2 ))  2∫ ((Gdx)/x)=∫{((tan^(−1) x)/x)+(1/(1+x^2 ))}dx                  =H+tan^(−1) x+c  H=ln xtan^(−1) x−∫((ln xdx)/((1+x^2 )))    Ω=((ln x)/(2x))(−(1/(1+x^2 )))−((ln x)/2)∫(dx/(x^2 (1+x^2 )))       +((tan^(−1) x)/2)+(1/2)ln xtan^(−1) x      −(1/2)∫((ln xdx)/((1+x^2 )))+c  ...
Ω=lnxdx(1+x2)2+{1xdx(1+x2)2}dxΩ=Glnx+GdxxG=dx(1+x2)2=12x(11+x2)12dxx2(1+x2)letx=tanθG=12(1+cos2θ)dθ=2θ+sin2θ4=tan1x2+x2(1+x2)2(Glnx)=(lnx)tan1x+xlnx1+x22Gdxx={tan1xx+11+x2}dx=H+tan1x+cH=lnxtan1xlnxdx(1+x2)Ω=lnx2x(11+x2)lnx2dxx2(1+x2)+tan1x2+12lnxtan1x12lnxdx(1+x2)+c
Commented by mathdanisur last updated on 12/Aug/21
Thankhou Ser, ans.?
ThankhouSer,ans.?
Answered by mnjuly1970 last updated on 12/Aug/21
  −(π/4) ....
π4.
Answered by Lordose last updated on 12/Aug/21
  Ω = ∫_0 ^( ∞) ((log(x))/((1+x^2 )^2 ))dx =^(x=tanθ) ∫_0 ^( (𝛑/2)) ((log(tan𝛉))/(sec^2 𝛉))  Ω = ∫_0 ^(𝛑/2) cos^2 θlog(sinθ)dθ − ∫_0 ^(𝛑/2) cos^2 θlog(cosθ)dθ  Ω = (∂/∂a)∫_0 ^(𝛑/2) cos^2 θsin^a (θ)dθ∣_(a=0)  − (∂/∂a)∫_0 ^(𝛑/2) cos^a (θ)dθ∣_(a=2)   B(x,y) = 2∫_0 ^(𝛑/2) sin^(2x−1) (t)cos^(2y−1) (t)dt  Ω = (∂/∂a)((1/2)B(((a+1)/2),(3/2)))∣_(a=0)  − (∂/∂a)((1/2)B((1/2),((a+1)/2)))∣_(a=2)   𝛀 = −(𝛑/4)
Ω=0log(x)(1+x2)2dx=x=tanθ0π2log(tanθ)sec2θΩ=0π2cos2θlog(sinθ)dθ0π2cos2θlog(cosθ)dθΩ=a0π2cos2θsina(θ)dθa=0a0π2cosa(θ)dθa=2B(x,y)=20π2sin2x1(t)cos2y1(t)dtΩ=a(12B(a+12,32))a=0a(12B(12,a+12))a=2Ω=π4

Leave a Reply

Your email address will not be published. Required fields are marked *