0-lt-x-y-z-lt-1-1-x-1-y-1-z-xyz-Find-min-1-x-xy-1-y-yz-1-z-zx- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 161900 by HongKing last updated on 23/Dec/21 0<x;y;z<1(1−x)(1−y)(1−z)=xyzFind:Ω=min(1−xxy+1−yyz+1−zzx) Answered by aleks041103 last updated on 24/Dec/21 1−x−y−z+xy+xz+yz=2xyz1−xxy+1−yyz+1−zzx==z−zx+x−xy+y−yzxyz==1−2xyzxyz=1xyz−2Weneedtofindmaxofxyz:(1−x)(1−y)(1−z)=xyz1z−1=xy(1−x)(1−y)⇒z=11+xy(1−x)(1−y)=(1−x)(1−y)(1−x)(1−y)+xy==(1−x)(1−y)+xy(1−x)(1−y)+xy−xy(1−x)(1−y)+xy==1+xy1−x−y+2xy=z(x,y)⇒f(x,y,z)=xyz(x,y)==xy+x2y21−x−y+2xyfx=(1+2xy1−x−y+2xy−x2y(2y−1)(1−x−y+2xy)2)y=0fy=(1+2xy1−x−y+2xy+xy2(2x−1)(1−x−y+2xy)2)x=0⇒(1−x−y+2xy)2+2xy(1−x−y+2xy)+x2y(2x−1)=0⇒(1−x−y+2xy)2+2xy(1−x−y+2xy)+y2x(2y−1)=0⇒x2(2x−1)y=y2x(2y−1)⇒x(2x−1)=y(2y−1)=a⇒x,yaresolutionsto2p2−p−a=0x=y(1−2x+2x2)2+2x2(1−2x+2x2)+x3(2x−1)=0… Commented by HongKing last updated on 28/Dec/21 thankyoudearSircool Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-sin-x-cos-x-1-sin-x-cos-x-Next Next post: Question-30836 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.