Menu Close

0-lt-x-y-z-lt-1-1-x-1-y-1-z-xyz-Find-min-1-x-xy-1-y-yz-1-z-zx-




Question Number 161900 by HongKing last updated on 23/Dec/21
0<x;y;z<1  (1-x)(1-y)(1-z)=xyz  Find:  Ω = min (((1-x)/(xy)) + ((1-y)/(yz)) + ((1-z)/(zx)))
0<x;y;z<1(1x)(1y)(1z)=xyzFind:Ω=min(1xxy+1yyz+1zzx)
Answered by aleks041103 last updated on 24/Dec/21
1−x−y−z+xy+xz+yz=2xyz  ((1-x)/(xy)) + ((1-y)/(yz)) + ((1-z)/(zx))=  =((z−zx+x−xy+y−yz)/(xyz))=  =((1−2xyz)/(xyz))=(1/(xyz))−2  We need to find max of xyz:  (1−x)(1−y)(1−z)=xyz  (1/z)−1=((xy)/((1−x)(1−y)))  ⇒z=(1/(1+((xy)/((1−x)(1−y)))))=(((1−x)(1−y))/((1−x)(1−y)+xy))=  =(((1−x)(1−y)+xy)/((1−x)(1−y)+xy))−((xy)/((1−x)(1−y)+xy))=  =1+((xy)/(1−x−y+2xy))=z(x,y)  ⇒f(x,y,z)=xyz(x,y)=  =xy+((x^2 y^2 )/(1−x−y+2xy))  f_x =(1+((2xy)/(1−x−y+2xy))−((x^2 y(2y−1))/((1−x−y+2xy)^2 )))y=0  f_y =(1+((2xy)/(1−x−y+2xy))+((xy^2 (2x−1))/((1−x−y+2xy)^2 )))x=0  ⇒(1−x−y+2xy)^2 +2xy(1−x−y+2xy)+x^2 y(2x−1)=0  ⇒(1−x−y+2xy)^2 +2xy(1−x−y+2xy)+y^2 x(2y−1)=0  ⇒x^2 (2x−1)y=y^2 x(2y−1)⇒x(2x−1)=y(2y−1)=a  ⇒x,y are solutions to 2p^2 −p−a=0  x=y  (1−2x+2x^2 )^2 +2x^2 (1−2x+2x^2 )+x^3 (2x−1)=0  ...
1xyz+xy+xz+yz=2xyz1xxy+1yyz+1zzx==zzx+xxy+yyzxyz==12xyzxyz=1xyz2Weneedtofindmaxofxyz:(1x)(1y)(1z)=xyz1z1=xy(1x)(1y)z=11+xy(1x)(1y)=(1x)(1y)(1x)(1y)+xy==(1x)(1y)+xy(1x)(1y)+xyxy(1x)(1y)+xy==1+xy1xy+2xy=z(x,y)f(x,y,z)=xyz(x,y)==xy+x2y21xy+2xyfx=(1+2xy1xy+2xyx2y(2y1)(1xy+2xy)2)y=0fy=(1+2xy1xy+2xy+xy2(2x1)(1xy+2xy)2)x=0(1xy+2xy)2+2xy(1xy+2xy)+x2y(2x1)=0(1xy+2xy)2+2xy(1xy+2xy)+y2x(2y1)=0x2(2x1)y=y2x(2y1)x(2x1)=y(2y1)=ax,yaresolutionsto2p2pa=0x=y(12x+2x2)2+2x2(12x+2x2)+x3(2x1)=0
Commented by HongKing last updated on 28/Dec/21
thank you dear Sir cool
thankyoudearSircool

Leave a Reply

Your email address will not be published. Required fields are marked *