Menu Close

0-n-x-2-n-x-p-dx-for-p-gt-0-




Question Number 17604 by tawa tawa last updated on 08/Jul/17
∫_(  0) ^(  n)  x^2 (n − x)^p  dx       for   p > 0
0nx2(nx)pdxforp>0
Answered by sma3l2996 last updated on 08/Jul/17
t=n−x⇒dt=−dx  I=∫_0 ^n x^2 (n−x)^p dx=∫_0 ^n (n−t)^2 t^p dt=∫_0 ^n (n^2 t^p −2nt^(p+1) +t^(p+2) )dt  =[(n^2 /(p+1))t^(p+1) −((2n)/(p+2))t^(p+2) +(t^(p+3) /(p+3))]_0 ^n   =(n^2 /(p+1))n^(p+1) −((2n)/(p+2))n^(p+2) +(n^(p+3) /(p+3))  =n^(p+3) ((1/(p+1))−(2/(p+2))+(1/(p+3)))=n^(p+3) ((((p+3)(p+2)−2(p+1)(p+3)+(p+1)(p+2))/((p+1)(p+2)(p+3))))  =n^(p+3) (((p^2 +5p+6−2p^2 −8p−6+p^2 +3p+2)/((p+1)(p+2)(p+3))))  I=((2n^(p+3) )/((p+1)(p+2)(p+3)))
t=nxdt=dxI=0nx2(nx)pdx=0n(nt)2tpdt=0n(n2tp2ntp+1+tp+2)dt=[n2p+1tp+12np+2tp+2+tp+3p+3]0n=n2p+1np+12np+2np+2+np+3p+3=np+3(1p+12p+2+1p+3)=np+3((p+3)(p+2)2(p+1)(p+3)+(p+1)(p+2)(p+1)(p+2)(p+3))=np+3(p2+5p+62p28p6+p2+3p+2(p+1)(p+2)(p+3))I=2np+3(p+1)(p+2)(p+3)
Commented by tawa tawa last updated on 08/Jul/17
God bless you sir.
Godblessyousir.
Answered by alex041103 last updated on 08/Jul/17
We use the substitution   u=n−x⇒−du=dx and x^2  = (n−u)^2   And we change the limits of integration  x=0    x=n  u=n    u=0  ⇒∫_0 ^n  x^2 (n−x)^p  dx = −∫_n ^0 (n−u)^2 u^p  du  =∫_0 ^n  (n^2 −2nu+u^2 )u^p  du  =n^2 ∫_0 ^n u^p du − 2n∫_0 ^n u^(p+1)  du + ∫_0 ^n u^(p+2)  du  =n^2  ((n^(p+1) −0)/(p+1)) − 2n((n^(p+2) −0)/(p+2))+((n^(p+3) −0)/(p+3))  =(n^(p+3) /(p+1))−2(n^(p+3) /(p+2))+(n^(p+3) /(p+3))  =n^(p+3) ((1/(p+1))−(2/(p+2))+(1/(p+3)))  This can be expressed as  ∫_0 ^n  x^2 (n−x)^p  dx = ((2n^(p+3) )/((p+1)(p+2)(p+3)))
Weusethesubstitutionu=nxdu=dxandx2=(nu)2Andwechangethelimitsofintegrationx=0x=nu=nu=0n0x2(nx)pdx=0n(nu)2updu=n0(n22nu+u2)updu=n2n0updu2nn0up+1du+n0up+2du=n2np+10p+12nnp+20p+2+np+30p+3=np+3p+12np+3p+2+np+3p+3=np+3(1p+12p+2+1p+3)Thiscanbeexpressedasn0x2(nx)pdx=2np+3(p+1)(p+2)(p+3)
Commented by tawa tawa last updated on 08/Jul/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *