Menu Close

0-pi-2-1-1-cos-x-2sin-x-dx-




Question Number 166612 by mnjuly1970 last updated on 23/Feb/22
   ∫_0 ^( (π/2))  (1/(1+cos(x)+2sin(x)))dx=?
0π211+cos(x)+2sin(x)dx=?
Commented by cortano1 last updated on 23/Feb/22
 1+cos x+2sin x= cos^2 (1/2)x+sin^2 (1/2)x+cos^2 (1/2)x−sin^2 (1/x)+2sin x  = 2cos^2 (1/2)x+4sin (1/2)xcos (1/2)x  = 2cos (1/2)x(cos (1/2)x+2sin (1/2)x)   I=(1/2)∫ ((sec (1/2)x)/(cos (1/2)x+2sin (1/2)x)) dx   I=(1/2)∫ ((sec^2 (1/2)x)/(1+2tan (1/2)x)) dx    [ u=(1/2)x ]  I= ∫ ((sec^2 u)/(1+2tan u)) du = (1/2)∫ ((d(1+2tan u))/(1+2tan u))  I=(1/2) ln ∣ 1+2tan u ∣ +c  I= (1/2)ln ∣1+2tan (1/2)x∣ + c    ∫_0 ^( (π/2)) (dx/(1+cos x+2sin x)) =(1/2) [ ln ∣1+2tan (1/2)x∣]_0 ^(π/2)    = ((ln 3)/2) .
1+cosx+2sinx=cos212x+sin212x+cos212xsin21x+2sinx=2cos212x+4sin12xcos12x=2cos12x(cos12x+2sin12x)I=12sec12xcos12x+2sin12xdxI=12sec212x1+2tan12xdx[u=12x]I=sec2u1+2tanudu=12d(1+2tanu)1+2tanuI=12ln1+2tanu+cI=12ln1+2tan12x+c0π2dx1+cosx+2sinx=12[ln1+2tan12x]0π2=ln32.
Commented by peter frank last updated on 23/Feb/22
thank you
thankyou
Answered by MJS_new last updated on 23/Feb/22
∫_0 ^(π/2) (dx/(1+cos x +2sin x))=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =∫_0 ^1 (dt/(2t+1))=(1/2)[ln (2t+1)]_0 ^1 =((ln 3)/2)
π/20dx1+cosx+2sinx=[t=tanx2dx=2dtt2+1]=10dt2t+1=12[ln(2t+1)]01=ln32

Leave a Reply

Your email address will not be published. Required fields are marked *