0-pi-2-1-1-cos-x-2sin-x-dx- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 166612 by mnjuly1970 last updated on 23/Feb/22 ∫0π211+cos(x)+2sin(x)dx=? Commented by cortano1 last updated on 23/Feb/22 1+cosx+2sinx=cos212x+sin212x+cos212x−sin21x+2sinx=2cos212x+4sin12xcos12x=2cos12x(cos12x+2sin12x)I=12∫sec12xcos12x+2sin12xdxI=12∫sec212x1+2tan12xdx[u=12x]I=∫sec2u1+2tanudu=12∫d(1+2tanu)1+2tanuI=12ln∣1+2tanu∣+cI=12ln∣1+2tan12x∣+c∫0π2dx1+cosx+2sinx=12[ln∣1+2tan12x∣]0π2=ln32. Commented by peter frank last updated on 23/Feb/22 thankyou Answered by MJS_new last updated on 23/Feb/22 ∫π/20dx1+cosx+2sinx=[t=tanx2→dx=2dtt2+1]=∫10dt2t+1=12[ln(2t+1)]01=ln32 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-101079Next Next post: Question-35544 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.