Menu Close

0-pi-2-1-1-sin-6-x-dx-




Question Number 167040 by cortano1 last updated on 05/Mar/22
      ∫_0 ^( (π/2)) (1/(1+sin^6 x)) dx=?
0π211+sin6xdx=?
Commented by greogoury55 last updated on 05/Mar/22
I=∫_0 ^(π/2) ((sec^6 x)/(sec^6 x+tan^6 x)) dx    =^(t=tan x)  ∫_0 ^∞ (((1+t^2 )^2 )/((1+t^2 )^3 +t^6 )) dt   = ∫_0 ^∞ ((t^4 +2t^2 +1)/((2t^2 +1)(t^4 +t^2 +1))) dt  = (1/3)[∫_0 ^∞ (dt/(2t^2 +1)) +∫_0 ^∞ ((t^2 +2)/(t^4 +t^2 +1)) dt ]  = (π/(12))((√2)+2(√3) )
I=0π2sec6xsec6x+tan6xdx=t=tanx0(1+t2)2(1+t2)3+t6dt=0t4+2t2+1(2t2+1)(t4+t2+1)dt=13[0dt2t2+1+0t2+2t4+t2+1dt]=π12(2+23)

Leave a Reply

Your email address will not be published. Required fields are marked *