Menu Close

0-pi-2-1-2-cos-x-dx-




Question Number 53295 by gunawan last updated on 20/Jan/19
∫_0 ^(π/2) (1/(2+cos x)) dx=...
0π212+cosxdx=
Commented by maxmathsup by imad last updated on 20/Jan/19
changement tan((x/2))=t give   A=∫_0 ^(π/2)   (dx/(2+cosx)) =∫_0 ^1    (1/(2+((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^1   ((2dt)/(2+2t^2 +1−t^2 )) =2 ∫_0 ^1   (dt/(3+t^2 ))  =_(t =(√3)u)    2 ∫_0 ^(1/( (√3)))   (((√3)du)/(3(1+u^2 ))) =((2(√3))/3) ∫_0 ^(1/( (√3)))   (du/(1+u^2 )) =((2(√3))/3) arctan((1/( (√3))))=(2/( (√3))) (π/6)  =(π/(3(√3))) ⇒★I =(π/(3(√3))) ★
changementtan(x2)=tgiveA=0π2dx2+cosx=0112+1t21+t22dt1+t2=012dt2+2t2+1t2=201dt3+t2=t=3u20133du3(1+u2)=233013du1+u2=233arctan(13)=23π6=π33I=π33
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Jan/19
∫_0 ^(π/2) (1/(2+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))dx  ∫_0 ^(π/2) ((sec^2 (x/2))/(2+2tan^2 (x/(2 ))+1−tan^2 (x/2)))dx  t=tan(x/2)    dt=(1/2)sec^2 (x/2)dx  ∫_0 ^1 ((2dt)/(3+t^2 ))  2×(1/( (√3)))∣tan^(−1) ((t/( (√3))))∣_0 ^1   (2/( (√3)))[tan^(−1) ((1/( (√3))))]=(2/( (√3)))×(π/6)=(π/(3(√3)))
0π212+1tan2x21+tan2x2dx0π2sec2x22+2tan2x2+1tan2x2dxt=tanx2dt=12sec2x2dx012dt3+t22×13tan1(t3)0123[tan1(13)]=23×π6=π33
Commented by gunawan last updated on 20/Jan/19
thank you Sir
thankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *