Menu Close

0-pi-2-2sin-x-cos-x-sin-x-cos-x-dx-




Question Number 187458 by mnjuly1970 last updated on 17/Feb/23
      Ω= ∫_0 ^( (π/2)) ((  2sin(x) − cos(x))/(sin(x) + cos (x))) dx = ?  −−−−
Ω=0π22sin(x)cos(x)sin(x)+cos(x)dx=?
Answered by Frix last updated on 17/Feb/23
((2sin x −cos x)/(sin x +cos x))−(1/2)+(1/2)=  =((3(sin x −cos x))/(2(sin x +cos x)))+(1/2)=  =(1/2)−((3(√2)cos (x+(π/4)))/(2(√2)sin (x+(π/4))))  ∫_0 ^(π/2) ((1/2)−(3/2)cot (x+(π/4)))dx=  =[(x/2)−((3ln ∣sin (x+(π/4))∣)/2)]_0 ^(π/2) =(π/4)
2sinxcosxsinx+cosx12+12==3(sinxcosx)2(sinx+cosx)+12==1232cos(x+π4)22sin(x+π4)π20(1232cot(x+π4))dx==[x23lnsin(x+π4)2]0π2=π4
Commented by mnjuly1970 last updated on 17/Feb/23
thanks alot
thanksalot
Answered by anurup last updated on 17/Feb/23
Ω=∫_0 ^(π/2) ((2sin x−cos x)/(sin x+cos x))dx −(1)  =∫_0 ^(π/2) ((2sin ((π/2)−x)−cos ((π/2)−x))/(sin ((π/2)−x)+cos ((π/2)−x)))dx  =∫_0 ^(π/2) ((2cos x−sin x)/(cos x+sin x))dx −(2)  (1)+(2) gives  2Ω=∫_0 ^(π/2) dx ⇒Ω=(π/4)
Ω=π202sinxcosxsinx+cosxdx(1)=π202sin(π2x)cos(π2x)sin(π2x)+cos(π2x)dx=π202cosxsinxcosx+sinxdx(2)(1)+(2)gives2Ω=π20dxΩ=π4
Commented by mnjuly1970 last updated on 17/Feb/23
thank you so much
thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *