Question Number 86167 by jagoll last updated on 27/Mar/20

Commented by mathmax by abdo last updated on 27/Mar/20

Commented by mathmax by abdo last updated on 27/Mar/20

Commented by M±th+et£s last updated on 28/Mar/20
![∫_0 ^(π/2) ((tan^(−1) ((√(tan(x)))))/(tan(x))) dx y^2 =tan(x) tan^− (y^2 )=x dx=((2y)/(1+y^4 )) dy I=∫_0 ^∞ ((tan^(−1) (y))/y^2 ) . ((2y)/(1+y^4 )) dy=∫_0 ^∞ ((2 tan^(−1) (y))/(y(1+y^4 )))dy I(a)=∫_0 ^∞ ((2tan^(−1) (ay))/(y(1+y^4 )))dy I(a)=∫_0 ^∞ (((2y)/(1+a^2 y^2 ))/(y(1+y^4 )))dy=∫_0 ^∞ (2/((1+a^2 y^2 )(1+y^4 )))dy =(2/(a^4 +1))∫_0 ^∞ ((a^2 /(1+a^2 y^2 ))+((1−a^2 y^2 )/(1+y^4 )))dy =(2/(a^4 +1))[∫_0 ^∞ (a^2 /(1+a^2 y^2 ))dy + ∫_0 ^∞ (1/(1+y^4 ))dy −a^2 ∫_0 ^∞ (y^2 /(1+y^4 ))dy] (2/(a^4 +1))[((a^3 π)/2)+(π/(2(√2)))−((a^2 π)/(2(√2)))] ((2π)/(a^4 +1))[((a^4 −(√2) a^2 +(√2))/4)]=(π/2)[((2a^3 −(√2)a^2 +(√2))/((a^2 +1)^2 −2a^2 ))] =(π/2)[(((2a+(√2))(a^2 −(√2)a+1))/((a^2 +(√2)a+1)(a^2 −(√2)a+1)))] I(0)=∫_0 ^∞ ((2tan^(−1) (0))/(y(1+y^4 )))dy=0 ⇒⇒0=(π/2)ln(0+0+1)+c c=0 I(a)=(π/2)ln(a^2 +(√2) a+1) I(1)=(π/2)ln(2+(√2)) notice// ∫_0 ^∞ (dy/(1+y^4 ))=(π/(2(√2))) and ∫_0 ^∞ (y^2 /(1+y^4 ))dy=(π/(2(√2))) and ∫_0 ^∞ (dy/(1+a^2 y^2 ))=((aπ)/2)](https://www.tinkutara.com/question/Q86332.png)
Answered by TANMAY PANACEA. last updated on 27/Mar/20
![(√(tanx)) =tant tanx=tan^2 t sec^2 xdx=2tant.sec^2 tdt dx=((2tantsec^2 t)/(1+tan^4 t))dt ∫_0 ^(π/2) ((2tantsec^2 t)/(1+tan^4 t))×(t/(tan^2 t))dt (I/2)=∫_0 ^(π/2) t×(1/(cos^2 t×((sint)/(cost))))×((cos^4 t)/(sin^4 t+cos^4 t))dt (I/2)=∫_0 ^(π/2) ((π/2)−t)×(1/(sintcost))×((sin^4 t)/(cos^4 t+sin^4 t))dt using ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx (I/2)+(I/2)=∫_0 ^(π/2) (π/2)×((sin^4 t)/(sintcost))×(1/(sin^4 t+cos^4 t)) ((2I)/π)=∫_0 ^(π/2) (1/(tant))×sec^2 t×(1/(1+tan^4 t))×dt a=tant ((2I)/π)=∫_0 ^∞ (da/(a(1+a^4 ))) =(1/2)∫_0 ^∞ ((d(a^2 ))/(a^2 (1+a^4 ))) replace a^2 by b ((4I)/π)=∫_0 ^∞ (db/(b(1+b^2 )))=(1/2)∫_0 ^∞ ((2bdb)/(b^2 (1+b^2 ))) ((8I)/π)=∫_0 ^∞ (dk/(k(1+k))) [k=b^2 ] =∫_0 ^∞ ((k+1−k)/(k(1+k)))dk =∫_0 ^∞ (dk/k)−∫_0 ^∞ (dk/(k+1)) =∣ln((k/(k+1)))∣_0 ^∞ some thing wrong](https://www.tinkutara.com/question/Q86184.png)