Menu Close

0-pi-2-arc-tan-tan-x-tan-x-dx-




Question Number 86167 by jagoll last updated on 27/Mar/20
∫_0 ^(π/2)  ((arc tan ((√(tan x))))/(tan x)) dx
π20arctan(tanx)tanxdx
Commented by mathmax by abdo last updated on 27/Mar/20
let take a try  I =∫_0 ^(π/2)  ((arctan((√(tanx))))/(tanx))dx changement (√(tanx))=t give tanx=t^2 ⇒  x =arctan(t^2 ) ⇒ I =∫_0 ^(+∞)  ((arctan(t))/t^2 )×((2t)/(1+t^4 ))dt  =2 ∫_0 ^∞   ((arctant)/(t(1+t^4 )))dt  the convergence of this integral is assured  let  f(a) =∫_0 ^∞   ((arctan(at))/(t(1+t^4 )))dt  with a>0  f^′ (a) =∫_0 ^∞    (t/(t(1+a^2 t^2 )(1+t^4 )))dt =∫_0 ^∞    (dt/((t^4  +1)(1+a^2 t^2 )))  =_(at=u)    ∫_0 ^∞    (du/(a((u^4 /a^4 ) +1)(1+u^2 ))) =∫_0 ^∞   ((a^3  du)/((u^2  +1)(u^4  +a^4 ))) ⇒  2f^′ (a) =a^3  ∫_(−∞) ^(+∞)  (du/((u^2  +1)(u^4  +a^4 ))) let ϕ(z) =(1/((z^2  +1)(z^4  +a^4 ))) ⇒  ϕ(z) =(1/((z−i)(z+i)(z^2 −ia^2 )(z^2  +ia^2 )))  =(1/((z−i)(z+i)(z−ae^((iπ)/4) )(z+ae^((iπ)/4) )(z−ae^(−((iπ)/4)) )(z+a e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,i) +Res(ϕ,ae^((iπ)/4) ) +Re(ϕ,−ae^(−((iπ)/4)) )}  Res(ϕ,i) =(1/((2i)(1+a^4 )))  Res(ϕ,ae^((iπ)/4) ) =(1/((a^2 i+1)(2ae^((iπ)/4) )(2ia^2 ))) =(e^(−((iπ)/4)) /(4ia^3 (1+a^2 i)))  Res(ϕ,−ae^(−((iπ)/4)) ) =(1/((−a^2 i+1)(−2ia^2 )(−2ae^(−((iπ)/4)) ))) =(e^((iπ)/4) /(4ia^3 (1−a^2 i))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/((2i)(1+a^4 ))) +(e^(−((iπ)/4)) /(4ia^3 (1+a^2 i))) +(e^((iπ)/4) /(4ia^3 (1−a^2 i)))}  =(π/(1+a^4 )) +(1/(2a^3 ))( (e^(−((iπ)/4)) /(1+a^2 i)) +(e^((iπ)/4) /(1−a^2 i)))  =(π/(1+a^4 )) +(1/(2a^3 ))(2Re((e^((iπ)/4) /(1−a^2 i)))) =(π/(1+a^4 )) +(1/a^3 )Re((e^((iπ)/4) /(1−a^2 i)))  (e^((iπ)/4) /(1−a^2 i)) =(((1+a^2 i) e^((iπ)/4) )/(1+a^4 )) =(((1+a^2 i)((1/( (√2)))+(i/( (√2)))))/(1+a^4 ))  =(1/( (√2)(1+a^4 )))(1+a^2 i)(1+i) =(1/( (√2)(1+a^4 )))(1+i+a^2 i−a^2 ) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =(π/(1+a^4 )) +((1−a^2 )/(a^3 (√2)(1+a^4 ))) ⇒  2f^′ (a) =((πa^3 )/(1+a^4 )) +((1−a^2 )/( (√2)(1+a^4 ))) ⇒f^′ (a) =(π/2)×(a^3 /(1+a^4 )) +(1/(2(√2)))×((1−a^2 )/(1+a^4 )) ⇒  f(a) =(π/2)∫_0 ^a   (x^3 /(1+x^4 ))dx +(1/(2(√2))) ∫_0 ^a  ((1−x^2 )/(1+x^4 ))dx +C  C=f(0) =0 ⇒f(a) =(π/8)ln(1+a^4 )+(1/(2(√2)))∫_0 ^a  ((1−x^2 )/(1+x^4 ))dx   I =2f(1) ....be continued....
lettakeatryI=0π2arctan(tanx)tanxdxchangementtanx=tgivetanx=t2x=arctan(t2)I=0+arctan(t)t2×2t1+t4dt=20arctantt(1+t4)dttheconvergenceofthisintegralisassuredletf(a)=0arctan(at)t(1+t4)dtwitha>0f(a)=0tt(1+a2t2)(1+t4)dt=0dt(t4+1)(1+a2t2)=at=u0dua(u4a4+1)(1+u2)=0a3du(u2+1)(u4+a4)2f(a)=a3+du(u2+1)(u4+a4)letφ(z)=1(z2+1)(z4+a4)φ(z)=1(zi)(z+i)(z2ia2)(z2+ia2)=1(zi)(z+i)(zaeiπ4)(z+aeiπ4)(zaeiπ4)(z+aeiπ4)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,aeiπ4)+Re(φ,aeiπ4)}Res(φ,i)=1(2i)(1+a4)Res(φ,aeiπ4)=1(a2i+1)(2aeiπ4)(2ia2)=eiπ44ia3(1+a2i)Res(φ,aeiπ4)=1(a2i+1)(2ia2)(2aeiπ4)=eiπ44ia3(1a2i)+φ(z)dz=2iπ{1(2i)(1+a4)+eiπ44ia3(1+a2i)+eiπ44ia3(1a2i)}=π1+a4+12a3(eiπ41+a2i+eiπ41a2i)=π1+a4+12a3(2Re(eiπ41a2i))=π1+a4+1a3Re(eiπ41a2i)eiπ41a2i=(1+a2i)eiπ41+a4=(1+a2i)(12+i2)1+a4=12(1+a4)(1+a2i)(1+i)=12(1+a4)(1+i+a2ia2)+φ(z)dz=π1+a4+1a2a32(1+a4)2f(a)=πa31+a4+1a22(1+a4)f(a)=π2×a31+a4+122×1a21+a4f(a)=π20ax31+x4dx+1220a1x21+x4dx+CC=f(0)=0f(a)=π8ln(1+a4)+1220a1x21+x4dxI=2f(1).becontinued.
Commented by mathmax by abdo last updated on 27/Mar/20
let try anther way we have  I =2∫_0 ^∞   ((arctant)/(t(1+t^4 )))dt  ⇒I =∫_(−∞) ^(+∞)   ((arctant)/(t(t^4  +1)))dt  let ϕ(z) =((arctanz)/(z(z^4  +1))) ⇒  ϕ(z) =((arctanz)/(z(z^2 −i)(z^2  +i))) =((arctan(z))/(z(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,0) +Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,0)=0  Res(ϕ,e^((iπ)/4) ) =((arctan(e^((iπ)/4) ))/(e^((iπ)/4) (2e^((iπ)/4) )(2i))) =((arctan(e^((iπ)/4) ))/(4i (i))) =−(1/4) arctan(e^((iπ)/4) )  Res(ϕ,−e^(−((iπ)/4)) ) =((−arctan(e^(−((iπ)/4)) ))/((−e^(−((iπ)/4)) )(−2e^(−((iπ)/4)) )(−2i))) =((arctan(e^(−((iπ)/4)) ))/(4i(−i)))  =(1/4) arctan(e^(−((iπ)/4)) ) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{−(1/4)arctan(e^((iπ)/4) )+(1/4) arctan(e^(−((iπ)/4)) )}  =−((iπ)/2){ arctan(e^((iπ)/4) )−arctan(e^(−((iπ)/4)) )}  we know  arctan(z) =(1/(2i))ln(((1+iz)/(1−iz))) and arctan(z^− )=(1/(2i))ln(((1+iz^− )/(1−iz^− )))  ⇒arctan(z)−arctan(z^− ) =(1/(2i))ln(((1+iz)/(1−iz))×((1−iz^− )/(1+iz^− )))  =(1/(2i))ln(((1−iz^− +iz +zz^− )/(1+iz^− −iz +zz^− ))) =(1/(2i))ln(((1+i(2iIm(z)+∣z∣^2 )/(1−i(2iIm(z))+∣z∣^2 )))  =(1/(2i))ln(((1−2Im(z)+∣z∣^2 )/(1+2Im(z)+∣z∣^2 ))) ⇒  arctan(e^((iπ)/4) )−arctan(e^(−((iπ)/4)) )  =(1/(2i))ln(((1−2×((√2)/2)+1)/(1+2×((√2)/2)+1))) =(1/(2i))ln(((2−(√2))/(2+(√2)))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =−((iπ)/2)×(1/(2i))ln(((2−(√2))/(2+(√2)))) =−(π/4)ln(((2−(√2))/(2+(√2))))  =(π/4)ln(((2+(√2))/(2−(√2)))) =I
lettryantherwaywehaveI=20arctantt(1+t4)dtI=+arctantt(t4+1)dtletφ(z)=arctanzz(z4+1)φ(z)=arctanzz(z2i)(z2+i)=arctan(z)z(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ{Res(φ,0)+Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,0)=0Res(φ,eiπ4)=arctan(eiπ4)eiπ4(2eiπ4)(2i)=arctan(eiπ4)4i(i)=14arctan(eiπ4)Res(φ,eiπ4)=arctan(eiπ4)(eiπ4)(2eiπ4)(2i)=arctan(eiπ4)4i(i)=14arctan(eiπ4)+φ(z)dz=2iπ{14arctan(eiπ4)+14arctan(eiπ4)}=iπ2{arctan(eiπ4)arctan(eiπ4)}weknowarctan(z)=12iln(1+iz1iz)andarctan(z)=12iln(1+iz1iz)arctan(z)arctan(z)=12iln(1+iz1iz×1iz1+iz)=12iln(1iz+iz+zz1+iziz+zz)=12iln(1+i(2iIm(z)+z21i(2iIm(z))+z2)=12iln(12Im(z)+z21+2Im(z)+z2)arctan(eiπ4)arctan(eiπ4)=12iln(12×22+11+2×22+1)=12iln(222+2)+φ(z)dz=iπ2×12iln(222+2)=π4ln(222+2)=π4ln(2+222)=I
Commented by M±th+et£s last updated on 28/Mar/20
∫_0 ^(π/2) ((tan^(−1) ((√(tan(x)))))/(tan(x))) dx  y^2 =tan(x)   tan^− (y^2 )=x  dx=((2y)/(1+y^4 )) dy  I=∫_0 ^∞ ((tan^(−1) (y))/y^2 ) . ((2y)/(1+y^4 )) dy=∫_0 ^∞ ((2 tan^(−1) (y))/(y(1+y^4 )))dy  I(a)=∫_0 ^∞ ((2tan^(−1) (ay))/(y(1+y^4 )))dy  I(a)=∫_0 ^∞ (((2y)/(1+a^2 y^2 ))/(y(1+y^4 )))dy=∫_0 ^∞ (2/((1+a^2 y^2 )(1+y^4 )))dy  =(2/(a^4 +1))∫_0 ^∞ ((a^2 /(1+a^2 y^2 ))+((1−a^2 y^2 )/(1+y^4 )))dy  =(2/(a^4 +1))[∫_0 ^∞ (a^2 /(1+a^2 y^2 ))dy + ∫_0 ^∞ (1/(1+y^4 ))dy −a^2 ∫_0 ^∞ (y^2 /(1+y^4 ))dy]  (2/(a^4 +1))[((a^3 π)/2)+(π/(2(√2)))−((a^2 π)/(2(√2)))]  ((2π)/(a^4 +1))[((a^4 −(√2) a^2 +(√2))/4)]=(π/2)[((2a^3 −(√2)a^2 +(√2))/((a^2 +1)^2 −2a^2 ))]  =(π/2)[(((2a+(√2))(a^2 −(√2)a+1))/((a^2 +(√2)a+1)(a^2 −(√2)a+1)))]  I(0)=∫_0 ^∞ ((2tan^(−1) (0))/(y(1+y^4 )))dy=0 ⇒⇒0=(π/2)ln(0+0+1)+c   c=0  I(a)=(π/2)ln(a^2 +(√2) a+1)  I(1)=(π/2)ln(2+(√2))        notice//   ∫_0 ^∞ (dy/(1+y^4 ))=(π/(2(√2)))    and ∫_0 ^∞ (y^2 /(1+y^4 ))dy=(π/(2(√2)))  and ∫_0 ^∞ (dy/(1+a^2 y^2 ))=((aπ)/2)
0π2tan1(tan(x))tan(x)dxy2=tan(x)tan(y2)=xdx=2y1+y4dyI=0tan1(y)y2.2y1+y4dy=02tan1(y)y(1+y4)dyI(a)=02tan1(ay)y(1+y4)dyI(a)=02y1+a2y2y(1+y4)dy=02(1+a2y2)(1+y4)dy=2a4+10(a21+a2y2+1a2y21+y4)dy=2a4+1[0a21+a2y2dy+011+y4dya20y21+y4dy]2a4+1[a3π2+π22a2π22]2πa4+1[a42a2+24]=π2[2a32a2+2(a2+1)22a2]=π2[(2a+2)(a22a+1)(a2+2a+1)(a22a+1)]I(0)=02tan1(0)y(1+y4)dy=0⇒⇒0=π2ln(0+0+1)+cc=0I(a)=π2ln(a2+2a+1)I(1)=π2ln(2+2)notice//0dy1+y4=π22and0y21+y4dy=π22and0dy1+a2y2=aπ2
Answered by TANMAY PANACEA. last updated on 27/Mar/20
  (√(tanx)) =tant  tanx=tan^2 t  sec^2 xdx=2tant.sec^2 tdt  dx=((2tantsec^2 t)/(1+tan^4 t))dt  ∫_0 ^(π/2) ((2tantsec^2 t)/(1+tan^4 t))×(t/(tan^2 t))dt  (I/2)=∫_0 ^(π/2) t×(1/(cos^2 t×((sint)/(cost))))×((cos^4 t)/(sin^4 t+cos^4 t))dt  (I/2)=∫_0 ^(π/2) ((π/2)−t)×(1/(sintcost))×((sin^4 t)/(cos^4 t+sin^4 t))dt  using ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx  (I/2)+(I/2)=∫_0 ^(π/2) (π/2)×((sin^4 t)/(sintcost))×(1/(sin^4 t+cos^4 t))  ((2I)/π)=∫_0 ^(π/2) (1/(tant))×sec^2 t×(1/(1+tan^4 t))×dt  a=tant   ((2I)/π)=∫_0 ^∞ (da/(a(1+a^4 )))  =(1/2)∫_0 ^∞ ((d(a^2 ))/(a^2 (1+a^4 )))    replace a^2  by b  ((4I)/π)=∫_0 ^∞ (db/(b(1+b^2 )))=(1/2)∫_0 ^∞ ((2bdb)/(b^2 (1+b^2 )))   ((8I)/π)=∫_0 ^∞ (dk/(k(1+k)))   [k=b^2 ]  =∫_0 ^∞ ((k+1−k)/(k(1+k)))dk  =∫_0 ^∞ (dk/k)−∫_0 ^∞ (dk/(k+1))  =∣ln((k/(k+1)))∣_0 ^∞   some thing wrong
tanx=tanttanx=tan2tsec2xdx=2tant.sec2tdtdx=2tantsec2t1+tan4tdt0π22tantsec2t1+tan4t×ttan2tdtI2=0π2t×1cos2t×sintcost×cos4tsin4t+cos4tdtI2=0π2(π2t)×1sintcost×sin4tcos4t+sin4tdtusing0af(x)dx=0af(ax)dxI2+I2=0π2π2×sin4tsintcost×1sin4t+cos4t2Iπ=0π21tant×sec2t×11+tan4t×dta=tant2Iπ=0daa(1+a4)=120d(a2)a2(1+a4)replacea2byb4Iπ=0dbb(1+b2)=1202bdbb2(1+b2)8Iπ=0dkk(1+k)[k=b2]=0k+1kk(1+k)dk=0dkk0dkk+1=∣ln(kk+1)0somethingwrong

Leave a Reply

Your email address will not be published. Required fields are marked *