Menu Close

0-pi-2-cos-2-x-2cos-x-sin-x-2-dx-




Question Number 144530 by EDWIN88 last updated on 26/Jun/21
 ∫_0 ^( π/2) ((cos^2 x)/((2cos x+sin x)^2 )) dx =?
0π/2cos2x(2cosx+sinx)2dx=?
Answered by mathmax by abdo last updated on 26/Jun/21
Φ=∫_0 ^(π/2)  ((cos^2 x)/((2cosx+sinx)^2 ))dx ⇒Φ=∫_0 ^(π/2)  ((cos^2 x)/(4cos^2 (x)+4cosxsinx +sin^2 x))dx  =∫_0 ^(π/2)  ((cos^2 x)/(3cos^2 x +4cosxsinx +1))dx =∫_0 ^(π/2)  ((1+cos(2x))/(2(3((1+cos(2x))/2)+2sin(2x)+1)))dx  =∫_0 ^(π/2)  ((1+cos(2x))/(3+3cos(2x)+4sin(2x)+2))dx=_(2x=t)   =(1/2)∫_0 ^π  ((1+cost)/(3+3cost +4sint +2))dt   =_(tan((t/2))=y)    (1/2)∫_0 ^∞  ((1+((1−y^2 )/(1+y^2 )))/(3+3((1−y^2 )/(1+y^2 )) +4.((2y)/(1+y^2 )) +2))×((2dy)/(1+y^2 ))  =∫_0 ^∞    (2/((3+3y^2 +3−3y^2  +8y+2+2y^2 )(1+y^2 )))dy  =∫_0 ^∞   ((2dy)/((1+y^2 )(8+2y^2  +8y)))dy =∫_0 ^∞   (dy/((y^2  +1)(y^2  +4y +4)))  =∫_0 ^∞  (dy/((y+2)^2 (y^2  +1)))  F(y)=(1/((y+2)^2 (y^2  +1)))=(a/(y+2))+(b/((y+2)^2 ))+((cy+d)/(y^2  +1))  b=(1/5)   the determination of  coefficient is not bad ⇒  ∫ F(y)dy =alog∣y+2∣−(b/(y+2))+(c/2)log(y^2  +1)+darctany +C  Φ=alog∣tan(x)+2∣−(b/(tanx +2))+(c/2)log(1+tan^2 x)+d x +C
Φ=0π2cos2x(2cosx+sinx)2dxΦ=0π2cos2x4cos2(x)+4cosxsinx+sin2xdx=0π2cos2x3cos2x+4cosxsinx+1dx=0π21+cos(2x)2(31+cos(2x)2+2sin(2x)+1)dx=0π21+cos(2x)3+3cos(2x)+4sin(2x)+2dx=2x=t=120π1+cost3+3cost+4sint+2dt=tan(t2)=y1201+1y21+y23+31y21+y2+4.2y1+y2+2×2dy1+y2=02(3+3y2+33y2+8y+2+2y2)(1+y2)dy=02dy(1+y2)(8+2y2+8y)dy=0dy(y2+1)(y2+4y+4)=0dy(y+2)2(y2+1)F(y)=1(y+2)2(y2+1)=ay+2+b(y+2)2+cy+dy2+1b=15thedeterminationofcoefficientisnotbadF(y)dy=alogy+2by+2+c2log(y2+1)+darctany+CΦ=alogtan(x)+2btanx+2+c2log(1+tan2x)+dx+C
Answered by Ar Brandon last updated on 26/Jun/21
I=∫_0 ^(π/2) ((cos^2 x)/((2cosx+sinx)^2 ))dx=∫_0 ^(π/2) (dx/((2+tanx)^2 ))    =∫_0 ^∞ ((2dt)/((2+t)^2 (1+t^2 )))=2∫_0 ^∞ (dt/((t+2)^2 (t^2 +1)))    =2∫_0 ^∞ ((4/(25))∙(1/(t+2))+(1/5)∙(1/((t+2)^2 ))−(1/(25))∙((4t−3)/(t^2 +1)))dt    =2[(4/(25))ln(t+2)−(1/5)∙(1/(t+2))−(2/(25))ln(t^2 +1)+(3/(25))arctan(t)]_0 ^∞     =[(4/(25))ln(((t^2 +2t+2)/(t^2 +1)))−(2/(5(t+2)))+(6/(25))arctan(t)]_0 ^∞     =−(4/(25))ln(2)+(1/5)+((3π)/(25))=(4/(25))ln((1/2))+(1/5)+((3π)/(25))
I=0π2cos2x(2cosx+sinx)2dx=0π2dx(2+tanx)2=02dt(2+t)2(1+t2)=20dt(t+2)2(t2+1)=20(4251t+2+151(t+2)21254t3t2+1)dt=2[425ln(t+2)151t+2225ln(t2+1)+325arctan(t)]0=[425ln(t2+2t+2t2+1)25(t+2)+625arctan(t)]0=425ln(2)+15+3π25=425ln(12)+15+3π25
Commented by Ar Brandon last updated on 26/Jun/21
f(t)=(1/((t+2)^2 (t^2 +1)))=(a/(t+2))+(b/((t+2)^2 ))+((ct+d)/(t^2 +1))          =((a(t+2)(t^2 +1)+b(t^2 +1)+(ct+d)(t+2)^2 )/((t+2)^2 (t^2 +1)))  lim_(t→−2) f(t)⇒5b=1⇒b=(1/5)  lim_(t→i) f(t)⇒(3d−4c)+(3c+4d)i=1  ⇒ { ((3d−4c=1)),((4d+3c=0)) :}⇒d=(3/(25)), c=−(4/(25))  For coefficient of t^3  we have a+c=0⇒a=(4/(25))  ⇒f(t)=(4/(25))∙(1/(t+2))+(1/5)∙(1/((t+2)^2 ))−(1/(25))∙((4t−3)/(t^2 +1))
f(t)=1(t+2)2(t2+1)=at+2+b(t+2)2+ct+dt2+1=a(t+2)(t2+1)+b(t2+1)+(ct+d)(t+2)2(t+2)2(t2+1)limft2(t)5b=1b=15limfti(t)(3d4c)+(3c+4d)i=1{3d4c=14d+3c=0d=325,c=425Forcoefficientoft3wehavea+c=0a=425f(t)=4251t+2+151(t+2)21254t3t2+1

Leave a Reply

Your email address will not be published. Required fields are marked *