Menu Close

0-pi-2-cos-2-x-cos-2-x-4sin-2-x-dx-




Question Number 160767 by cortano last updated on 06/Dec/21
    ∫_( 0) ^( (π/2))  ((cos^2 x)/(cos^2 x+4sin^2 x)) dx =?
0π2cos2xcos2x+4sin2xdx=?
Answered by MJS_new last updated on 06/Dec/21
∫_0 ^(π/2) ((cos^2  x)/(cos^2  x +4sin^2  x))dx=       [t=tan x → dx=(dt/(t^2 +1))]  =∫_0 ^∞ (dt/((t^2 +1)(4t^2 +1)))=(1/3)∫_0 ^∞ ((1/(t^2 +(1/4)))−(1/(t^2 +1)))dt=  =(1/3)[2arctan 2t −arctan t]_0 ^∞ =(π/6)
π/20cos2xcos2x+4sin2xdx=[t=tanxdx=dtt2+1]=0dt(t2+1)(4t2+1)=130(1t2+141t2+1)dt==13[2arctan2tarctant]0=π6

Leave a Reply

Your email address will not be published. Required fields are marked *