Menu Close

0-pi-2-cos-x-1-sin-2x-3-dx-




Question Number 171392 by cortano1 last updated on 14/Jun/22
  ∫_0 ^(π/2)  ((cos x)/((1+(√(sin 2x)) )^3 )) dx =?
π20cosx(1+sin2x)3dx=?
Commented by infinityaction last updated on 19/Jun/22
       I = ∫_0 ^(π/2) ((cos (π/2 − x))/(1+(√(sin 2(π/2 −x)))))dx       2I = ∫_0 ^(π/2) ((cos x +sin x)/([1+(√(1−(1−sin 2x))) ]^3  ))dx        1−sin 2x = (sin x−cos x)^2        let   p = sin x−cos x → dp = cos x+sin x)dx          2I = ∫_(−1) ^1 (dp/((1+(√(1−p^2 )))^3 ))        let p= sin ∅  → dp = cos ∅ d∅        I = (1/2)∫_(−π/2) ^(π/2) ((cos ∅ )/((1+cos ∅)^3 ))d∅       I=∫_0 ^(π/2) ((cos ∅)/((1+cos ∅)^3 ))d∅      t = tan ((∅/2))       I = ∫_0 ^1 (1−t^4 )dt      I   =  (1/5)
I=0π/2cos(π/2x)1+sin2(π/2x)dx2I=0π/2cosx+sinx[1+1(1sin2x)]3dx1sin2x=(sinxcosx)2letp=sinxcosxdp=cosx+sinx)dx2I=11dp(1+1p2)3letp=sindp=cosdI=12π/2π/2cos(1+cos)3dI=0π/2cos(1+cos)3dt=tan(2)I=01(1t4)dtI=15

Leave a Reply

Your email address will not be published. Required fields are marked *